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What is LLM Upcycling
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Why LLM Upcycling is Important

Growing Demand for Specialized LLMs

• Domain-specific applications require tailored 
model capabilities

• General-purpose models often underperform 
on domain-specific tasks
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Why LLM Upcycling is Important

Growing Demand for Specialized LLMs

• Domain-specific applications require tailored 
model capabilities

• General-purpose models often underperform 
on domain-specific tasks

The Promise of SMoEs

• Flexible capacity scaling without proportional 
compute increase

• Specialized experts for different domains/tasks
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Why LLM Upcycling is Important

The Scaling Challenge in SMoEs

• Training from scratch: enormous computational 
cost per model
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Why LLM Upcycling is Important

The Scaling Challenge in SMoEs

• Training from scratch: enormous computational 
cost per model
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Why LLM Upcycling is Important

The Scaling Challenge in SMoEs

• Training from scratch: enormous computational 
cost per model

The Upcycling Opportunity

• Convert existing dense LLMs → SMoE 
architectures through post-training

• Leverage pre-trained knowledge + add 
specialized capacity
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Why LLM Upcycling is Important

The Scaling Challenge in SMoEs

• Training from scratch: enormous computational 
cost per model

The Upcycling Opportunity

• Challenge: How can we keep pushing for a 
better compute-performance trade-off?
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Limitations of Existing LLM Upcycling Methods

Limitation 1: Manual Upcycling Parameter Selection

Current methods commonly rely on heuristic rules to decide "where to upcycle“ in a LLM.

Typically, this involves manual selection of FFN or Attention modules for upcycling into SMoE modules.

• Neglect Difference in Parameter Importance

• Different layers/parameters within the same LLM can have significantly different importance to the 
model's overall functionality.

• Neglect  Domain Adaptation Needs

• Different domain tasks can require specific optimal upcycling/fine-tuning locations.
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Limitations of Existing LLM Upcycling Methods

Limitation Lack of Expert Cooperation and Specialization  

Current methods lack a systematic mechanism to balance expert specialization and collaborative 
cooperation.

• Insufficient Specialization

• Traditional SMoE frameworks use fixed shared expert mechanisms to force collaboration.

• Such designs suppress the specialization of domain experts.

• In extreme cases, this results in model collapse.

• Inefficient Collaboration

• Some upcycling methods (e.g., BTX[1]) use independent fine-tuning strategies to promote expert 
specialization.

• Separate training of multiple domain experts on different datasets, followed by integration into a 
unified SMoE model.

• Independent training hinders knowledge transfer, leading to redundant expert parameters.

●10 [1] Sainbayar Sukhbaatar, et al. "Branch-train-mix: Mixing expert LLMs into a mixture-of-experts LLM". In First Conference on Language Modeling.



Sparse Interpolated Mixture-of-Experts (SIMoE)

Automatic Expert Discovery

Sparsity-constrained optimization 
enables automatic expert discovery 
through learnable structured 
sparsity patterns
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Balanced Specialization and 
Cooperation

Parameter sharing + orthogonal 
penalty balances specialization-
cooperation



Automatic Expert Discovery

Key idea: We propose to formulate "where-to-upcycle" as a sparsity-constrained optimization problem. 

SIMoE optimizes for “where-to-upcycle” globally:

• Introducing learnable binary masks 𝒛𝒊 ∈ 0,1  for each linear layer in the LLM

• The resultant SIMoE Layer Formulation

●12

𝑦 = 𝑓𝜽𝐒𝐈𝐌𝐨𝐄 𝑥 ,



Automatic Expert Discovery

SIMoE Layer Formulation
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Neuron-level Sparsity 

• Traditional expert parameter mask 𝑍 ∈
0,1 𝑴×𝑌×𝑋 leads to M-fold increase in training 

parameters.

• SIMoE enforces structued sparsity 𝑍 ∈ 0,1 𝑴×𝑌×1, 
masking input neurons.

• Ensures both fine-grained control and 
computational feasibility in learning “where-to-
upcycle”



Automatic Expert Discovery

SIMoE Layer Formulation
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Prevent Catastrophic Forgetting

• Freeze pre-trained model parameters 𝜃pre

• Ensures parameter updates remain 
sparse additions to– rather than 
replacements of–pre-trained functionality.

• Mitigating catastrophic forgetting while 
maintaining the same model 
expressiveness.



Balanced Specialization and Cooperation

Promote Cooperation through Parameter Sharing

• Shared parameters 𝜽𝜹 for all experts

• Weighted merge of experts in the parameter 
space via a learned router network ℎ𝜁
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Ensure Specialization through Orthogonal Masks

• Distinct sparse masks, {𝒛𝑖}𝑖=1
𝑀 , for experts

• Orthogonal Penalty on Masks



Sparsity-Constrained Optimization
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SIMoE Training Objective
• Minimize: 𝐿nll(𝑦, 𝑥, 𝜃SIMoE)  +  𝛽𝐿ortho(𝑍)

• Subject to the sparsity constraint : 1 −  𝐿₀(𝑍)  ≥  𝜏 

‐ where 𝜏 ∈ [0,1] is the target sparsity level 

Practical Implementation for Solving the Problem
• We perform simultaneous gradient ascent and descent:

• Pruning of non-essential expert parameters during training, as sparsity level increases.
• Optimized solution is guaranteed to have sparsity at at least 𝜏.
• Precise control of # activated parameters.



Experimental Validation
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SNI Dataset

• 1616 instructed NLP tasks

• Training on 64 distinct 
task categories

• Testing on 12 unseen 
categories

• Cross-task generalization 
evaluation

Tülu-v3 Dataset

• Large-scale instruction-
tuning dataset

• 939,343 unique training 
instances

• Multi-domain evaluation

Model Configuration

• 8 experts maximum

• 𝜏 = 75% sparsity 
constraint

• Llama3 backbone models



Superior Cross-Task Performance
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Key Achievements

• 3B Model: +2.5% improvement over Full FT

• 8B Model: +1.6% improvement over Full FT

• Consistency: Wins in 7+ out of 12 task categories

Detailed Results

• Complete SNI benchmark results showing performance across all 12 unseen task categories



Scalability and Efficiency

SOTA Performance on Tülu-v3 

Parameter Efficiency and Memory Savings
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Interpretable Expert Discovery and Specialization
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Domain Discovery

• Task similarity dendrogram showing automatic 
domain clustering

Sparsity Patterns

• Learned upcycling patterns by layer depth and type

• Expert overlap analysis showing balanced 
specialization



Importance of SIMoE Components
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Ablated Variants 
(a) We upcycle only the FNN layers. 
(b) We exclude the Orthogonal Penalty on expert masks.
(c) We do not impose Sparsity Constraints on the masks z, allowing them to be freely optimized as 

standard trainable parameters with values on the full real axis. 
(d) We replace Instance-level Routing with token-level routing in the SIMoE module. 



Hyperparameter Sensitivity Analysis
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Orthogonal Penalty

• Extreme values of β lead to suboptimal outcomes due 
to excessive or minimal overlap among experts, which 
either impedes specialization or limits combinatorial 
generalization capabilities.

Target Sparsity

• Low and high extremes of τ result in performance 
degradation, either through parameter redundancy or 
excessive sparsity, which constrains model capacity.

SIMoE consistently outperforms the best baseline score of 65.05 across all evaluated hyperparameter 
settings, highlighting its robustness and reliability



Summary
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SIMoE Enables Efficient and Effective LLM Upcycling Without Manual Intervention

• First automatic framework for where-to-upcycle determination

• Novel parameter sharing + orthogonal penalty design

• Significant performance gains with double-digit compute savings

Limitation and Future Directions

• Multimodal applications

• Theoretical analysis



Background: BTX
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