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What is LLM Upcycling
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Why LLM Upcycling is Important Dense

- LLMs
Growing Demand for Specialized LLMs

 Domain-specific applications require tailored
model capabilities

* General-purpose models often underperform

on domain-specific tasks Dense SLMs

Multi Domain Performance

Total Training Cost
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Why LLM Upcycling is Important Dense

- SMoEs LLMs
Growing Demand for Specialized LLMs h t
 Domain-specific applications require tailored
model capabilities é—
* General-purpose models often underperform X<_ 3
on domain-specific tasks

Dense SLMs

The Promise of SMoEs

* Flexible capacity scaling without proportional
compute increase

Multi Domain Performance

» Specialized experts for different domains/tasks < / )

Total Training Cost
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Why LLM Upcycling is Important Dense

- LLMs
SMoEs

The Scaling Challenge in SMoEs

* Training from scratch: enormous computational
cost per model

Dense SLMs

Multi Domain Performance

Total Training Cost
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Why LLM Upcycling is Important Dense

- LLMs
SMoEs

The Scaling Challenge in SMoEs

* Training from scratch: enormous computational
cost per model

Dense SLMs

Multi Domain Performance

</>

Total Training Cost

Still very costly!
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SMoEs from Scratch:
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Why LLM Upcycling is Important Dense

— E Upcycled SMoEs HLMs

The Scaling Challenge in SMoEs h J SMoEs
* Training from scratch: enormous computational
cost per model <|.

The Upcycling Opportunity Dense SLMs [ Upcycling

« Convert existing dense LLMs > SMoE
architectures through post-training

* Leverage pre-trained knowledge + add
specialized capacity

Multi Domain Performance

tal Training Cost
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Upcycled SMoEs:  SLMTraining SM
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— How can we get here?

Why LLM Upcycling is Important

Upcycled ?j:ﬂse
- SMoEs SMoEs S
The Scaling Challenge in SMoEs h t
* Training from scratch: enormous computational
cost per model (I-
o

The Upcycling Opportunity Dense SLMs

* Challenge: How can we keep pushing for a
better compute-performance trade-off?

Multi Domain Performance
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Total Training Cost

Upcycled SMoEs:  SLM Training SM’?aining
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Limitations of Existing LLM Upcycling Methods

Limitation 1: Manual Upcycling Parameter Selection
Current methods commonly rely on heuristic rules to decide "where to upcycle® in a LLM.

Typically, this involves manual selection of FFN or Attention modules for upcycling into SMoE modules.

* Neglect Difference in Parameter Importance

 Different layers/parameters within the same LLM can have significantly different importance to the
model's overall functionality.

* Neglect Domain Adaptation Needs
» Different domain tasks can require specific optimal upcycling/fine-tuning locations.

Downstream Domain Pe ormance

Where-to-upcycle? @ <

FFN Blocks @ @ @ @
Attn Blocks @ @ @ @
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Limitations of Existing LLM Upcycling Methods

Limitation Lack of Expert Cooperation and Specialization

Current methods lack a systematic mechanism to balance expert specialization and collaborative
cooperation.

* Insufficient Specialization
e Traditional SMoE frameworks use fixed shared expert mechanisms to force collaboration.

* Such designs suppress the specialization of domain experts.
* In extreme cases, this results in model collapse.

* [Inefficient Collaboration

* Some upcycling methods (e.g., BTX[1]) use independent fine-tuning strategies to promote expert
specialization.

* Separate training of multiple domain experts on different datasets, followed by integration into a
unified SMoE model.

* Independent training hinders knowledge transfer, leading to redundant expert parameters.
;'.:‘.'?f: Thomson
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Sparse Interpolated Mixture-of-Experts (SIMoE)

Shared expert parameters (3) Compute training losses Automatic Expert Discovery
5 Orthogonality . . .. .
0 Sparsity-constrained optimization
o 0] Stack all expert -»|ocortho(zy = ||zZT - 1|, . :
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\ Determine where-to-upcycle through gating

-_. (2, © 8%) ﬂz(zz ©6%)  aunzu ©8)  E— Negative Log-likelihood

Router network = £y, x, OSIMOE) ] Balanced Specialization and
M\ Upcycied LLM I Cooperation

[

( ) Compute expert activation /\
for input prompt SIMoE __[ppre 5 .
Putpromp O =[Ol Y (2 0 0°) Target output, ¥ Parameter sharing + orthogonal
[ Trainable parameters ([ Loss = oilienced modem dance. penalty balances specialization-
introducing new possibilities .
R Create upcycled LLM through interpolation and expanding the. . cooperation
([ Frozen parameters Training only (2) of experts and (frozen) pre-trained LLM
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Automatic Expert Discovery

Key idea: We propose to formulate "where-to-upcycle" as a sparsity-constrained optimization problem.

SIMoE optimizes for “where-to-upcycle” globally:

 Introducing learnable binary masks z; € {0,1} for each linear layer in the LLM

* The resultant SIMoE Layer Formulation

Yy = fOSIMoE (x),

M
9SIHDE —  Qrre + Zai 70 9;’5

* =1
GERE 0 EhERIgE
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Automatic Expert Discovery

SIMoE Layer Formulation Shared expert parameters
95
O] Stack all expert
SIMoE re E , d ©
9 S gp at . Z'E @ 9 o/ \ . masks .
M expert S EEECCEE
;tJ: S =1 =1 masks Z= 5 7 - Sparsity constraint
ﬁﬁiﬂeg 58 Zy | Zz Zy T zy |
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| dim(z) ~ #0+#0
Neu ron'level SparSity \ Determine where-to-upcycle through gating
+ Traditional expert parameter mask Z € ©@00) ©@ 00" OO S
{0,1}M*Y*X |eads to M-fold increase in training + E e E
parameters. \' Upeycled LLM
‘ M i /‘
» SIMoE enforces structued sparsity Z € {0,1}M>XY*1, ¢3MFE —|gP°|1 Y " 0,(z; © 6°)
masking input neurons. i=1

Create upcycled LLM through interpolation

* Ensures both fine-grained control and of experts and (frozen) pre-trained LM

computational feasibility in learning “where-to-
upcycle”
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Automatic Expert Discovery

SIMoE Layer Formulation

9SIHDE _ gpre E :az i zz ® 95
’tF aRE =1 ﬁﬁmg IRE
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Prevent Catastrophic Forgetting
* Freeze pre-trained model parameters 6P'¢

* Ensures parameter updates remain
sparse additions to- rather than
replacements of—pre-trained functionality.

« Mitigating catastrophic forgetting while
maintaining the same model
expressiveness.
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Shared expert parameters
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Create upcycled LLM through interpolation
of experts and (frozen) pre-trained LLM
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Balanced Specialization and Cooperation

Promote Cooperation through Parameter Sharing Ensure Specialization through Orthogonal Masks

o« g M
« Shared parameters 69 for all experts - Distinct sparse masks, {z;};_,, for experts
« Weighted merge of experts in the parameter * Orthogonal Penalty on Masks
space via a learned router network h
¢ min max Loy + B|ZZ" — T||2 + A(m — (1 — Lo(Z)))
9o 2 4,C A=0
Ei&é“]ﬁ %Emf‘]ﬁé
Shared expert parameters ( 3) Compute training losses
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Instruction prompt, X o masks '
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\ Determine where-to-upcycle through gating
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Router network
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Sparsity-Constrained Optimization

SIMoE Training Objective
« Minimize: L™ (y, x, 9SIMoEy 1 prortho 7
* Subject to the sparsity constraint: 1 — Ly(Z) > ©
- where 7 € [0,1] is the target sparsity level

Practical Implementation for Solving the Problem
*  We perform simultaneous gradient ascent and descent:

.
glgérﬁlggcﬁnu + 5HZZ - IHE + /\(T — (il = LO(Z)))

IE;U’.!‘]% ?%Eméﬁﬁ

* Pruning of non-essential expert parameters during training, as sparsity level increases.
*  Optimized solution is guaranteed to have sparsity at at least 7.
* Precise control of # activated parameters.
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Experimental Validation

SNI Dataset Tiilu-v3 Dataset

* 1616 instructed NLP tasks « Large-scale instruction-

* Training on 64 distinct tuning dataset

task categories * 939,343 unique training

: instances
* Testing on 12 unseen

categories * Multi-domain evaluation

« Cross-task generalization
evaluation
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Model Configuration

8 experts maximum

T = 75% sparsity
constraint

Llama3 backbone models
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Superior Cross-Task Performance

Key Achievements

3B Model: +2.5% improvement over Full FT

8B Model: +1.6% improvement over Full FT

« Consistency: Wins in 7+ out of 12 task categories

Detailed Results

« Complete SNI benchmark results showing performance across all 12 unseen task categories

TitleGen. Coref.  Text. Quest. Cause  Dialog Ans. Keyword Datato Word Overlap Grammar
Seed LLM Method Res. Entail. Rewrit. Eff. Act Class.  Tag. Text Analogy Extr. Corr. Ave. (1)
Class. Recog.
Full FT  40.20 55.33 58.80 67.60 T70.52 6238 68.13 59.60 52.08 39.50 6635 BH.68 60.76
Llama3.2 3B  Upcyc. 41.25 37.54 06228 67.97 Hi5.82 66.14 67.23 63.61 51.21 46.17 62.05 87.86 O1.84
SIMoE 41.14 57.67 63.17 68.08 69.54 68.31 67.59 67.87 51.40 48.50 68.27 87.64 63.26
Full FT  41.35 57.20 6 46 67.35 71.05 7317 67.14 66.58 53.04 52.71 66.93 B7.82 64.07
Llama3 8B Upcyc.  41.93 62.24 045 H5.49 73.40 69.06 66.93 66.61 32.30 55.55 72.05 87.59 63.05
SIMoE  43.04 64.37 66.49 68.86 76.40 70.70 68.92 67.79 51.73 52.79 72.06 85.38 65.71
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Scalability and Efficiency

SOTA Performance on Tiulu-v3

MMLU PopQA Truthful BBH DROP MATH GSMS8K Human Human IFEval Alpaca Safety
Mithod QA Eval  Eval+ Eval 2 Avg. (1)
Tiilu v2 8B SFT  61.8 23.3 49.4 57.1 61.7 14.0 60.4 66.9 63.1 42.3 8.9 70.7 48.3
RLHFlow v2 SFT  65.8 29.7 56.0 69.3 57.2 35.7 81.6 86.2 80.9 52.7 13.6 43.5 56.0
MAmmoTH2 8B 63.6 20.8 427 63.4 43.8 30.5 63.7 72.8 66.4 34.9 6.5 47.8 46.4
Tiilu v3 8B SFT 659 29.3 46.8 67.9 61.3 31.5 76.2 86.2 81.4 72.8 12.4 93.1 60.4
BTX 64.5 30.9 48.9 69.0 58.9 33.0 80.9 85.2 80.9 73.1 11.7 93.4 60.9
SIMoE (Ours) 66.5 28.7 51.6 69.5 57.5 30.1 81.3 86.5 81.3 74.1 12.4 94.8 61.1
Parameter Efficiency and Memory Savings

o 80 2 30

et mmm SIMoE (Ours) ~ B SIMoE (Ours)

> mEmm Upcyc. EJ_J mmm Upcyc. Total

g 60 v BW Upcyc. Active

[

a © 20

€ 40 g

~ /N

o T 10 . 29,39

N Y N

S, 42.7%
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Interpretable Expert Discovery and Specialization

Domain Discovery Sparsity Patterns
* Task similarity dendrogram showing automatic » Learned upcycling patterns by layer depth and type
domain clustering 015
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Importance of SIMoE Components

Ablated Variants

(a) We upcycle only the FNN layers.

(b) We exclude the Orthogonal Penalty on expert masks.
(c) We do not impose Sparsity Constraints on the masks z, allowing them to be freely optimized as

@21

standard trainable parameters with values on the full real axis.
(d) We replace Instance-level Routing with token-level routing in the SIMoE module.

Model L.U. O.P. S.C. LR. ROUGE-L(1) Params.(|)(B)
(a) v v v 61.52 4.01
(b) v v v 62.67 4.01
(c) v v 62.54 6.08
(d) v v v 62.51 4.01
SIMoE v/ v v v 63.26 4.01
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Hyperparameter Sensitivity Analysis

SIMoE consistently outperforms the best baseline score of 65.05 across all evaluated hyperparameter

settings, highlighting its robustness and reliability

Orthogonal Penalty

* Extreme values of 3 lead to suboptimal outcomes due
to excessive or minimal overlap among experts, which
either impedes specialization or limits combinatorial
generalization capabilities.

Orthogonality 0 5¢ % Be @ He 4
Avg. ROUGE-L (1) 65.56 65.71 65.77 65.31
Approx. Expert Overlap % 25 11 7 2

022

Target Sparsity

Low and high extremes of T result in performance
degradation, either through parameter redundancy or
excessive sparsity, which constrains model capacity.

Sparsity 7

0 0.5

0.75 0.9

Avg. ROUGE-L (1)

65.37 65.31

65.71 65.52
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Summary

SIMoE Enables Efficient and Effective LLM Upcycling Without Manual Intervention
* First automatic framework for where-to-upcycle determination
* Novel parameter sharing + orthogonal penalty design

« Significant performance gains with double-digit compute savings

Limitation and Future Directions
* Multimodal applications

* Theoretical analysis

. LX)
:»~’s Thomson
023 %, :.." Reuters™



Background: BTX

MoE vi FF1
Feedforward ;

layer 1

/
,

Branch from a seed model

Train expefts separately on their Mix the experts in an unified
corresponding data Mixture-of-Experts model and finetune

Figure 1 The Branch-Train-MiX (BTX) method has three steps: 1) branch from a pretrained seed LLM by making multiple
copies of it; 2) train those copies separately on different subsets of data to obtain expert LLMs; 3) mix those expert
LLMs by combining them into a single LLM using mixture-of-experts feedforward (FF) layers, and finetuning the

overall unified model.
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