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* Explosion of reasoning models

e Commercial models

* OpenAl’s o-series, Claude 3.7/4.0 Sonnet, and Gemini 2.5 Pro

* Open-Source models

2025 A Reasoning Model Year

A Paradigm Shift

* DeepSeek-R1, Qwen QwQ, Qwen 3 family, NVIDIA Llama Nemotron Family

* What Sets Reasoning Models Apart?

» Extended thinking time using long chain-of-thought and stepwise processing

* Trained via reinforcement learning techniques

» State-of-the-art performance on challenging reasoning benchmarks

Humanity's Last Exam Benchmark Leaderboard: Results

Independently conducted by Artificial Analysis
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The Ultimate Question For Developing Reasoning Model

* Does reinforcement learning truly unlock new reasoning capabilities from a base model, or does it merely optimize the sampling
efficiency of solutions already embedded in the base model (temperature distillation)?

Base LLM ]QE o
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Claims: No Acquired Capabilities Beyond Base Models
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Is LLM RL doomed?

Temperature distillation is boring, what about superhuman intelligence?
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21000 - AlphaGo Zero surpasses all other versions of AlphaGo

and, arguably, becomes the best Go player in the world.
It does this entirely from self-play, with no human

-1000 - intervention and using no historical data.
~2000 -
| ] 1 ] 1 T 1 T |
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==w AlphaGo Zero 40 blocks  eeee AlphaGo Lee seee AlphaGo Master

What’s common in previous studies:

An overreliance on specialized domains like mathematics that is overtrained during both pre-training and post-training phases

Can someone be creative if he only trains on the tasks that he is already good at?

The premature termination of RL training, typically no more than hundreds of step

Can someone discover new ideas if he is only allowed to explore a new area for a short amount of time?

Luckily, our study find evidences that models learns new capabilities beyond the base model.

Implication: potentially achieve superhuman intelligence just by running RL.

NVIDIA.



Our Philosophy to Train Reasoning Models

In contrast to prev

* Prolonged Reinforcement Learning, scale the RL training
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* Using diversified novel reasoning tasks
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ious studies, ProRL is different
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1> Logic

Circuit logic

Question: Below is a logic circuit.

Data Type

R:eward Type

Quantity

Data Source

Math

Code

STEM

Logical Puzzles

Instruction Following

Binary
Continuous
Binary
Continuous
Continuous

40k
24k
25k
37k
10k

DeepScaleR Dataset
Eurus-2-RL Dataset
SCP-116K Dataset
Reasoning Gym
[lama-Nemotron
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Legend for gates:
&&: AND | t1: NAND | ee: XOR | >o0: Negate | ++: OR

Cognition

Given a square matrix, your job is to find the Manhattan
distance of the nearest 0 for each cell.

The output should be a matrix of the same size as the
input matrix, where each cell contains the distance to
the nearest 0.

011010101
001110111
111101010
010111110
101011111
101110010
111111101
110000110
010110111
Answer:

011010101
001110111
111101010
010112110
101011121
101110010
211111101
110000110
010110121

Figlet fonts

Question: What word does this say?

8888ba.88ba 88888888b dp dP .d88888b .d88888b .d888888

Games

Question:

Move the red car (AA) to the exit on the right.

Specify moves in the format: 'F+1 K+1 M-1 C+3 H+2 ...',
where the letter is the vehicle and +/- number is spaces

to move right/left or down/up. Walls are marked with an 'x'.

Cars cannot move through walls, and walls cannot be moved.
A car oriented vertically can only move up and down,
a car oriented horizontally can only move left and right.

Board:
BB. IKx
CCCIK.
GAAD..
G.HJIDD
. .HEEL
.FF.xL

Answer:
F-1 G+1 A-1 H-1 E-2 J+2 D-1 L-3 D+1 J-2 E+3 H+2 A+1 J+2 ...

Question: You see a size 3 Rubik's cube. It is arranged this:

B Y R

B Y W

B Y Y
R RRY G GOOGY B W
R RRY GG OOWGUB W
R RY B B B WO WG B W

0 0 O

G W Y

G W O

Please provide a solution to solve this cube using Singmaster

Rubik’s cube

2lfeg_tge_f8}lgwf"g_1gpft1?SZIE"T?";Si 0 6= 1: 88 ‘8b ‘8b 88 88 88 88. " gg. " d8' 88 notation. Do not combine any steps, for instance, do not
H _ 10 T _ 0 3 _ 0 K _ 0 S T E e 88 88 88 a88aaaa 88 88 'Y88888b. 'Y88888b. 88aaaaa88a write 'U2', and instead write 'U U'.
i ; ; 88 88 88 88 88 88 8b 8b 88 88
88 88 88 88 88 88 d8' .sP d8' .8P 88 88
What is the final output? Answer:
dP dP dpP 88888888P  88888888P  dP Y88888P Y88888P 88 88
L' DDB"DDRRU'"FTUFUUBU' B" RR UURU' FUUF'
AIELEAE o Answer: MELISSA
. J L J y
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Outlines

How to achieve Prolonged reinforcement learning
Reasoning model training Results - ProRL produced SOTA 1.5B reasoning model

Analysis on the results to address the question whether RL expand the reasoning boundary

NVIDIA.



How to Achieve ProRL

We use GRPO RL algorithm with DAPO tricks

Dynamic sampling

Decoupled clip high and low

Lcrro(f) =

“4T~TTH

min (rg(r)A(7),  clip(rg(r),1 — €1+ €)A(7))

Clip(‘l'g(T). 1 — €low s 1 -+ Gh‘i!}h)

Balance the exploration and exploitation

Sustainable entropy

Resetting the reference policy and optimizer states

No bounded exploration

NVIDIA.



Balance the Exploration and Exploitation

* Entropy trending up or down is bad

* |tis not sustainable for prolonged training, the same reasoning that exploding/vanishing gradient is bad in training.

Pass@1 Score
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AIME pass@1
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We need KL regularization to maintain constant entropy
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Stable Entropy

A good balance between exploration and exploitation

— Entropy -— Response Length =' Reset Point -- IFEval added
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Importance of Reference Model Resetting

Stabilize the Training

—  (Continuous Run (No Reset)
— Combined Runs (With Reset)

0.16
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Reasoning Model Training Results
State of Art 1.5B Reasoning Model

Math Performance Coding Performance (Pass@1)
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Pass Rate (%)

Better than Specialized Domain Models

100 ™= DeepsScaleR-1.58 oo ™ DeepCoder1.5B
B Nemotron-Research-Reasoning-Qwen-1.5B +2.5 (+2.8%) == Nemotron-Research-Reasoning-Qwen-1.58B -1.4 (-1.8%)
91.9 73.4
89.4 72.0
+6.2 (+8.6%) 70
50 79.3
60
+8.6 (+16.7%) +5.6 (+10.3%)
60.2 60.1 ¥ 50
60 o P +11.6 (+38.3%)
+7.9 (+19.7%) +6.4 (+15.4%) 51.6 - 42.0 +6.5 (+21.1%)
48.1 48.0 &< 40 +12.8 (+59.0%) 37.5
A +8.0 (+33.8%) 34.5
41.6 © 31.8
40 +1.9 (+5.9%) & :
315 333 30 +1.0 (+4.6%)
. +7.0 (+51.2%) b,y g 238
21-7 20.8 )
20
20 13.8
10
0 , .
AIME24 AIME25 AMC MATH Minerva Olympiad Bench ~ Math Avg. 0 apps codecontests codeforces taco humanevalplus livecodebench Code pass@1 Avg
Math Benchmarks Code Benchmarks
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Matches DeepSeek-R1-7B Performance

Table 1: Performance (pass@ 1) comparison for benchmarks across Math domain. The best results
are highlighted in bold. The results of DeepSeek-R 1-Distill-Qwen-7B are marked as gray and are

provided as a reference (same 1n all following tables).

Model AIME24 AIME25S AMC Math Minerva Olympiad | Avg

DeepSeek-R1-Distill-Qwen-1.5B 28.54 2271 62.58 82.90 26.38 43.58 44 .45
DeepScaleR-1.5B 40.21 31.46 73.04 89.36 41.57 51.63 54.54
DeepSeek-R1-Distill-Qwen-7B 53.54 4(.83 82.83 93.68 50.60 57.66 63.19
Nemotron-Research-Reasoning-Qwen-1.5B 48.13 35.33 79.29 9189 47.98 60.22 60.14

Table 2: Performance (pass@ 1) comparison across benchmarks for Code. We abbreviate benchmarks
names for codecontests (cc), codeforces (ct), humanevalplus (human), and livecodebench (LCB).

Model apps cC ct taco human LCB Avg
DeepSeek-R 1-Distill-Qwen-1.5B 2095 16.79 14.13 8.03 61.77 16.80 | 23.08
DeepCoder-1.5B 30.37 2376 21.70 13.76 7340 22.76 | 30.96
DeepSeek-R 1-Distill-Qwen-7B 4208 3276 33.08 19.08 83.32 38.04 | 41.39
Nemotron-Research-Reasoning-Qwen-1.5B | 41.99 31.80 3450 2081 7205 2381 | 3749

Table 3: Performance comparison on STEM reasoning (GPQA Diamond), instruction following
(IFEval), and logic puzzles (Reasoning Gym) tasks. We also present results on OOD tasks: acre,

boxnet, and game_of_life_halting (game).

Model GPQA IFEval Reasoning | acre  boxnet game
DeepSeek-R 1-Distill-Qwen-1.5B 1586 44.05 4.24 5.99 0.00 3.49
DeepSeek-R [-Distill-Qwen-7B 35.44 58.01 28.5) 20.2] L. 7] 12.94
Nemotron-Research-Reasoning-Qwen-1.5B | 41.78  66.02 59.06 58.57 N 52.29
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Scores

Performance Score

Keep training our 1.5B model
3K steps

NVIDIA 1.5B Reasoning Model Progress: 2K vs 3K Steps

Math Performance Coding Performance (Pass@1)
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Reasoning Capabilities Expand With Continued Training.
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Improves Creativity Index and Pass@K
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Pass@Kk

Out of Distribution For Different Task and Difficulty Levels

boxnet pass@k
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Explain the Reasoning Boundary Improvement
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o © ©
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Summary

Our findings suggest that prolonged reinforcement learning (ProRL) training significantly expands the reasoning capabilities of base
models.

The more compute ProRL uses, the more creative solutions it discovers.

Previous claims about temperature distillation effect were likely due to:
A narrow focus on overtrained mathematical tasks

Insufficient RL training steps
In contrast, our approach emphasizes scaling reasoning model training through a wide range of diverse and novel tasks.

To fully realize the benefits of ProRL, it is essential to maintain stable entropy and periodically reset the reference model to eliminate
performance boundaries.

Using ProRL, we successfully trained a state-of-the-art 1.5B parameter reasoning model.

NVIDIA.
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