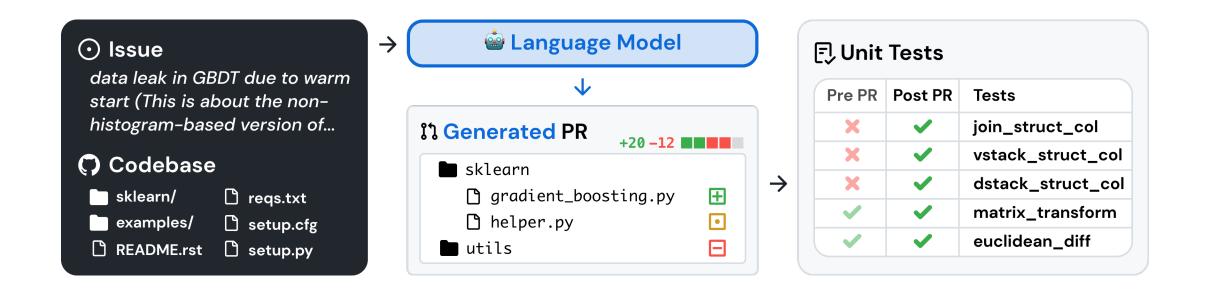
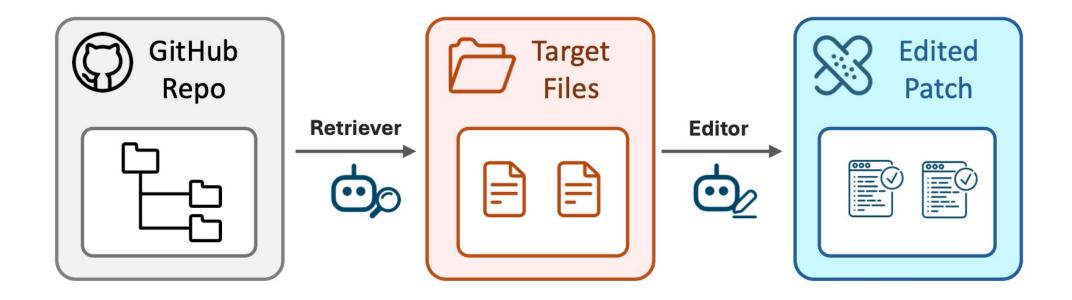
Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering

Guangtao Zeng 5th July

Overview for Software Engineering Task



Overview for Software Engineering Pipeline



Importance of Software Engineering Task

Weeks per task

Hours per task

Over-Reliance on Proprietary Models

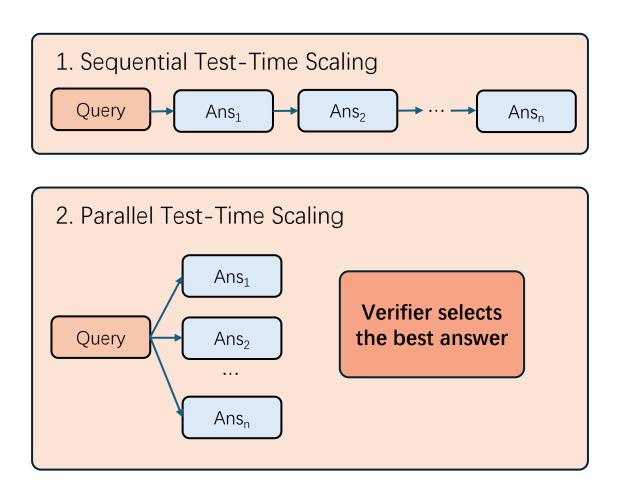
Large gap between Proprietary Models and Open Source small model

Proprietary Models

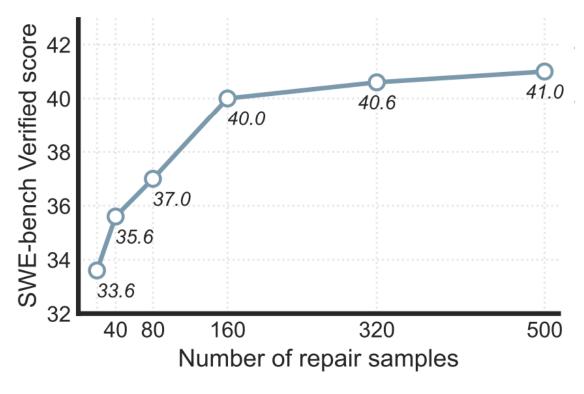
Open Source Small Models

Model	% Resolved	Org	Date	Logs	Trajs	Site
■▼ Skywork-SWE-32B + TTS(Bo8)	47.00	5	2025-06-16	~	~	C [*]
■✓ OpenHands + DevStral Small 2505	46.80	#	2025-05-20	~	~	ď
■ PatchPilot + Co-PatcheR	46.00		2025-05-28	~	✓	ď
■ ✓ SWE-agent + SWE-agent-LM-32B	40.20	\$	2025-05-11	~	~	ď
■ ✓ Skywork-SWE-32B	38.00	5	2025-06-16	~	✓	ď
☑ SWE-Fixer (Qwen2.5-7b retriever + Qwen2.5-72b editor)	32.80	28.000	2025-03-06	✓	✓	ď

Test-Time Scaling Boosts Model Performance on SWE-bench

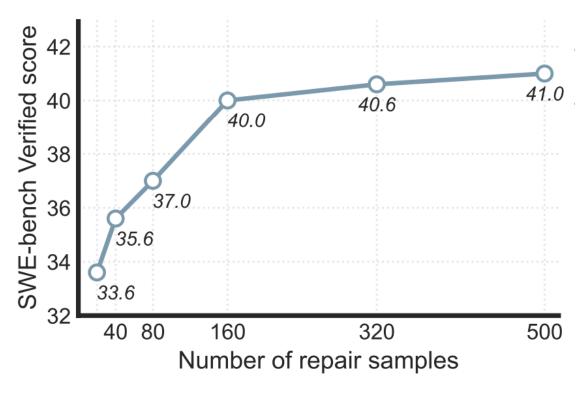


Test-Time Scaling Boosts Model Performance on SWE-bench



• Score improves from 33.6 to 41.0 as repair samples increase.

Test-Time Scaling Boosts Model Performance on SWE-bench

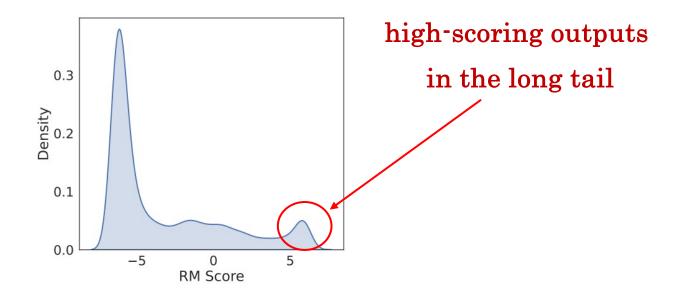


- Score improves from 33.6 to 41.0 as repair samples increase.
- Sample-inefficient!
 - Unit test running in docker. (few mins per issue)
 - Long context in inference.

Why is test-time scaling sample-inefficient in SWE task?

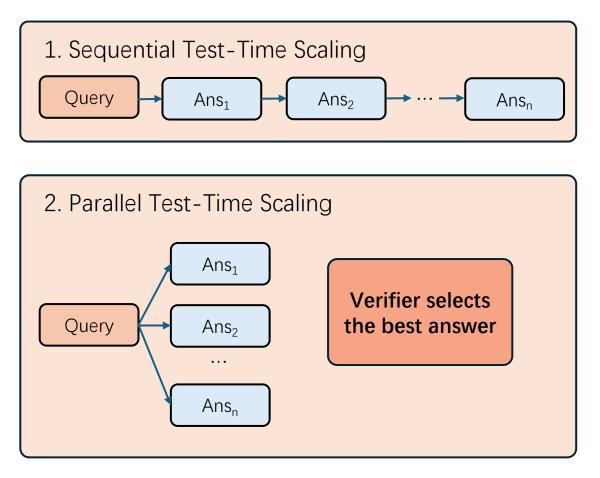


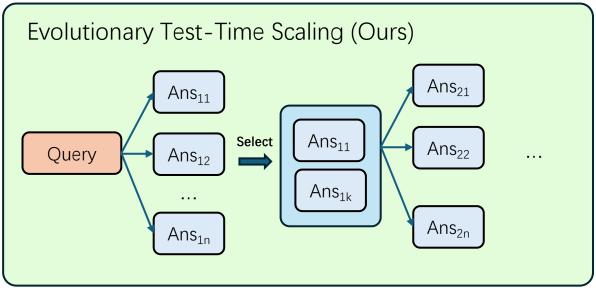
Why is test-time scaling sample-inefficient in SWE task?



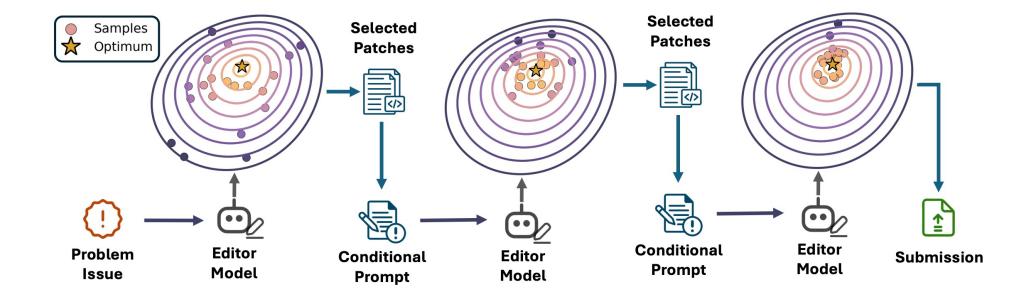
Can we teach model to change the **distribution of its generation toward the high score?**

Compared to existed Test-Time Scaling methods





Evolutionary Test-Time Scaling Pipeline



Classical SFT

• SFT objective function

$$\max_{\pi_{\text{SFT}}} \mathbb{E}_{x \sim \mathcal{D}, y_{\text{SFT}}^* \sim \mu(\cdot \mid x, C(x))} \left[\log \pi_{\text{SFT}}(y_{\text{SFT}}^* \mid x, C(x)) \right].$$

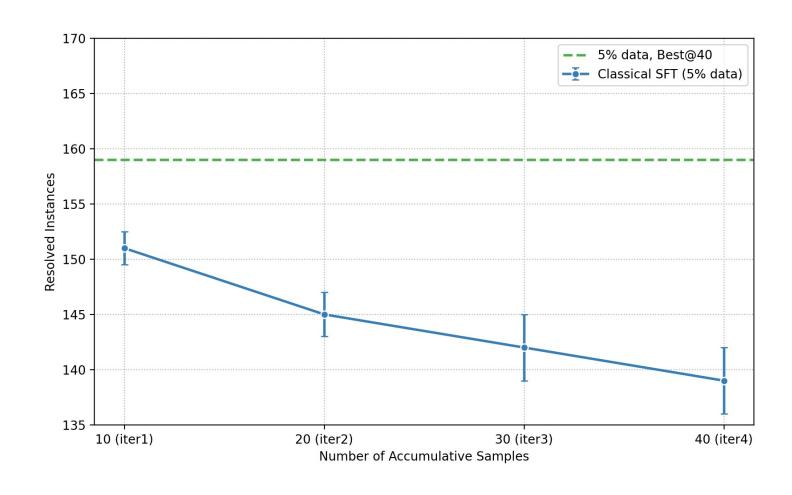
• SFT data

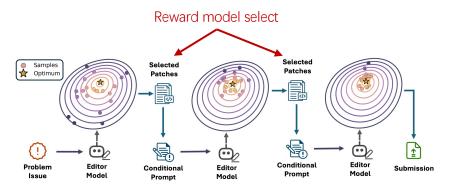
Problem Statement

<Thinking>

Oracle Patch Answer

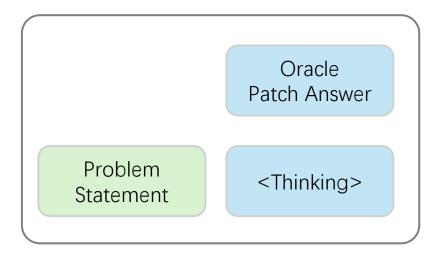
Model with only Classical SFT can not have the ability to evolve.



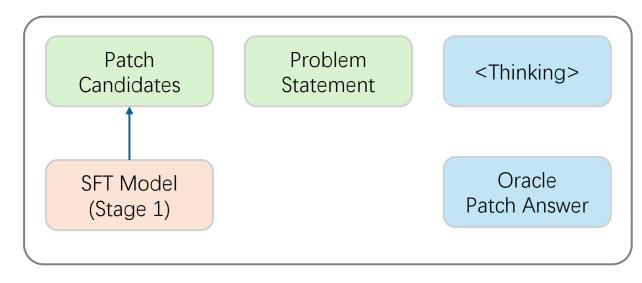


Mutation-Based SFT Enable Models Evolve

• Mutation SFT (mutation data +classical data)

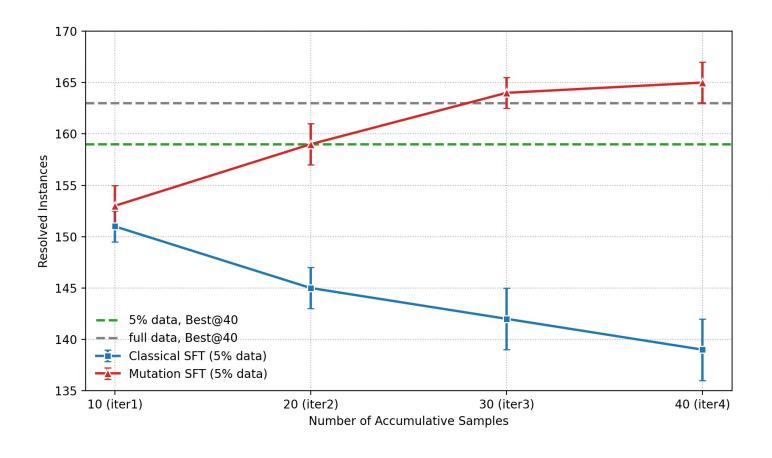


Classical data

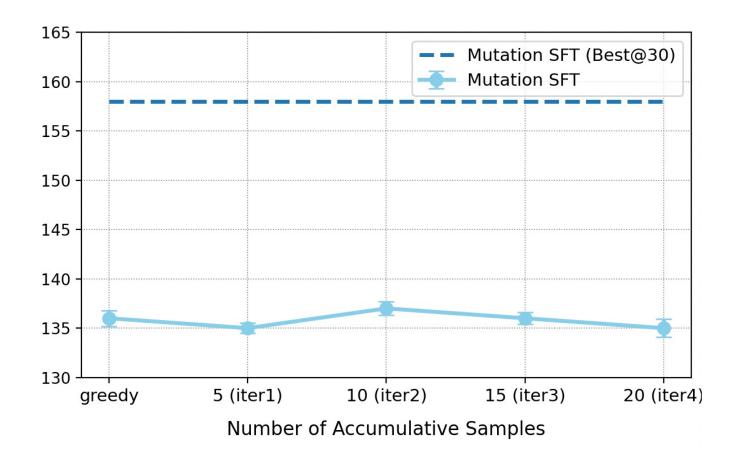


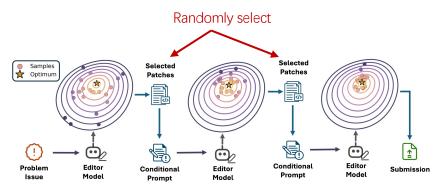
Mutation data

Mutation SFT helps LLMs iteratively evolve

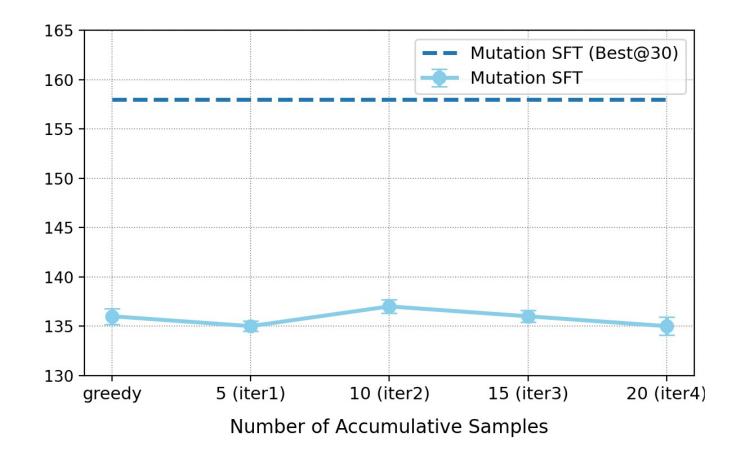


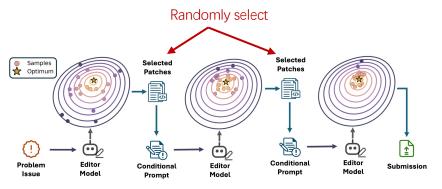
However, SFT-only Model fails to self-improve without reward model





However, SFT-only Model fails to self-improve without reward model





We then introduce an RL approach that teaches model to self-evolve without scoring or filtering.

Learning to Self-evolve via Large-scale RL

• Naïve RL objective is:

$$\max_{\pi} \mathbb{E}_{y^t \sim \pi(\cdot|x, C(x), \mathcal{E}^{t-1})} \left[\sum_{t=0}^{T} r_t \right], \quad \text{where} \quad r_t = \begin{cases} R(x, y^t), & t = T \\ 0, & \text{otherwise} \end{cases}$$
 (3)

Learning to Self-evolve via Large-scale RL

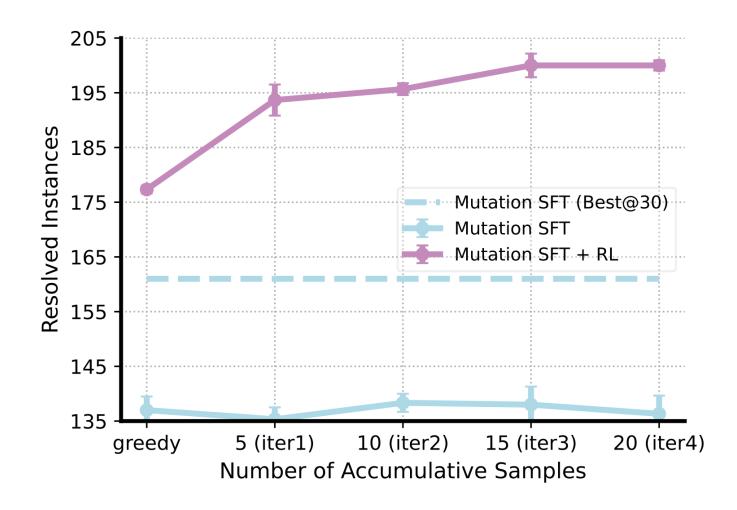
• We adopt potential shaping to alleviate sparse rewards and also teach the model to better evolve.

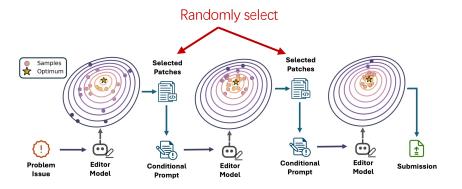
$$r_t = \Phi(y^t) - \Phi(y^{t-1}) = R(x, y^t) - R(x, y^{t-1}).$$

• Therefore, we will have this RL objective:

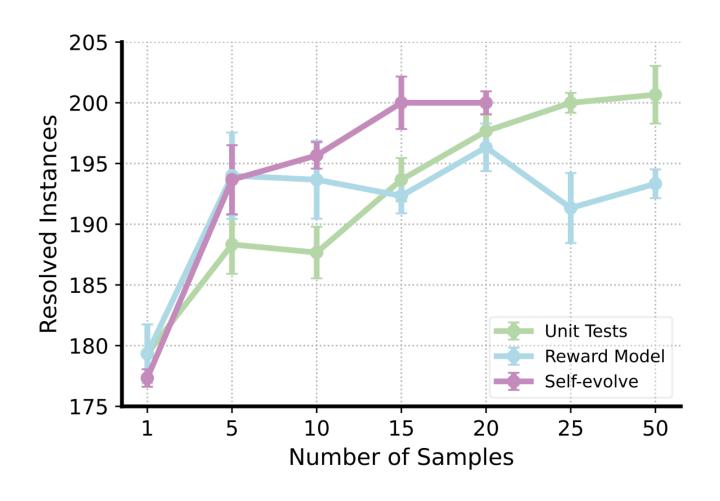
$$\max_{\pi_{\mathrm{RL}}} \mathbb{E}_{y \sim \pi_{\mathrm{RL}}(\cdot | x, C(x), \mathcal{E}), y' \sim \mathcal{E}} \left[R(x, y) - R(x, y') - \lambda F(y) \right].$$

SFT+RL Enables Self-evolve Capability





Evolutionary Test-time Scaling v.s. Other Test-time Scaling



- Parallel Scaling
 - Unit Tests
 - · Reward Model

- Evolutionary Scaling
 - Self-evolve

Final Results on SWE-bench Verified

Model Scale	Model/Methods	Scaffold	SWE-Verified Resolved Rate
Large	GPT-4o [35]	SWE-agent	23.0
	GPT-40 [33]	Agentless	38.8
	GPT-40 [37]	AutoCodeRover	28.8
	GPT-40 [19]	SWE-SynInfer	31.8
	OpenAI o1 [33]	Agentless	48.0
	Claude 3.5 Sonnet [35]	SWE-agent	33.6
	Claude 3.5 Sonnet [30]	OpenHands	53.0
	Claude 3.5 Sonnet [33]	Agentless	50.8
	Claude 3.5 Sonnet [37]	AutoCodeRover	46.2
	Claude 3.7 Sonnet [1]	SWE-agent	58.2
	DeepSeek-R1 [7]	Agentless	49.2
	DeepSeek-V3 [18]	Agentless	42.0
Small	Lingma-SWE-GPT-7B (Greedy) [19]	SWE-SynInfer	18.2
	Lingma-SWE-GPT-72B (Greedy) [19]	SWE-SynInfer	28.8
	SWE-Fixer-72B (Greedy) [34]	SWE-Fixer	30.2
	SWE-Gym-32B (Greedy) [22]	OpenHands	20.6
	SWE-Gym-32B (Best@16) [22]	OpenHands	32.0
	Llama3-SWE-RL-70B (Best@80) [31]	Agentless Mini	37.0
	Llama3-SWE-RL-70B (Best@160) [31]	Agentless Mini	40.0
	Llama3-SWE-RL-70B (Best@500) [31]	Agentless Mini	41.0
	Satori-SWE-32B (Greedy)	Satori-SWE	35.8
	Satori-SWE-32B (Best@10)	Satori-SWE	38.9
	Satori-SWE-32B (Best@25)	Satori-SWE	40.2
	Satori-SWE-32B (Best@50)	Satori-SWE	41.6

Thanks