REREHET R (L SRV E A

The Entropy Mechanism of Reinforcement Learning for

Reasoning Language Models

Paper http://arxiv.org/abs/2505.22617

¥Fq0 Ganqu Cui, Yuchen Zhang, Jiacheng Chen and

Ning Ding et.al

2025.07.01

ILLINOIS

uuuuuu -CHAMPAIGN



http://arxiv.org/abs/2505.22617

Why Reinforcement Learning

Some of the Al breakthroughs in the past 10 years
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Why Reinforcement Learning

Some of the Al breakthroughs in the past 1 year

8llldlarge-scale reinforcement learning algorithmiGCE R GE R TR GR {1111

productively using its chain of thought in a highly data-efficient training process. We have

found that the performance of o1 consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The
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Why Reinforcement Learning

The next Scaling Law?

One thing that should be learned from the
bitter lesson 1s the great power of general
purpose methods, of methods that continue to
scale with increased computation even as
the available computation becomes very great. _
The two methods that seem to scale arbitrarily 'ideas matter”

in this way are|search and learning. Richard Sutton

(ACM Turing Award)
/ \ The Bitter Lesson

Reinforcement learning Pretraining and finetuning




Why Reinforcement Learning

Welcome to the Era of Experience

David Silver, Richard S. Sutton®

Consequently, the methodology of experiential
RL was largely discarded in favour of more
general-purpose agents, resulting 1n a
widespread transition to human-centric Al
However, something was lost in this transition:
an agent’s ability to self-discover its own
knowledge. The era of experience will
reconcile this ability with the level of task
generality achieved in the era of human data.

David Silver
AlphaGo, AlphaZero

"ideas matter"

Richard Sutton
(ACM Turing Award)



Why haven’t Reinforcement Learning

RL with LLMs haven’t been scaled well

 Most open-source models can only be trained for
several hundred steps

 The training compute in RL is still smaller than pre-
training in magnitude

 Why can’t we train LLMs with RL for months?



A Major Obstacle: Entropy Collapse

What is Entropy?
e aconcept commonly associated with states of
disorder, randomness, or uncertainty

 Stemmed from Thermodynamics

* Introduced in Information Theory by Claude Shannon

n
H(X)=— ;) 1o i
( ) ;p(m ) gp(a: ) Claude Shannon



A Major Obstacle: Entropy Collapse

Entropy is basic in reinforcement learning
 RLis about exploration-exploitation tradeoff
 Entropy is a good measure of exploration

 Widely-adopted regularization term (maximum entropy RL)

AGENT ENVIRONMENT
-State s € S
' - Take action a € A
w - Getreward 7

-Newstate s" € S

https://lilianweng.github.io/posts/2018-02-19-rl-overview/



A Major Obstacle: Entropy Collapse
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However, in RL for LLMs
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 Entropy regularization is rarely considered
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e policy entropy encounters a sharp drop
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Figure 2: Avg. entropy consumption/performance
gain (%) from 11 RL runs with different models.



A Major Obstacle: Entropy Collapse

What if we put them together?

 Astrong correlation between policy entropy and performance

Qwen2.5 Model Family
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A Major Obstacle: Entropy Collapse

What if we put them together?

A strong correlation between policy entropy and performance

* We get an empirical function to describe it
R=—aexp(H)+b

* |t means that, we can predict policy performance from its entropy



What does this function implicate?

A Major Obstacle: Entropy Collapse

R=—aexp(H)+b

Predicting late stage from early stage
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Figure 5: Predicting the final performance of Qwen2.5 family with only 15% training steps with the fitted
function. The average RMSE is 0.9% and 1.2% for all predicted steps, 0.5% and 1.9% for final step
performance, respectively.



A Major Obstacle: Entropy Collapse

What does this function implicate? R = —aexp(H) + b

 Without entropy intervention, RL is just trading entropy for performance

* The ceiling of RL is pre-determined (H=0,R=—a+0)

Does RL for LLM just Trade Entropy for Performance ?
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A Major Obstacle: Entropy Collapse

What affect the coefficients? R = —aexp(H)+0b
 The coefficients are algorithm-irrelevant
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Figure 6: Training Qwen2.5-7B with differ-
ent RL algorithms.



A Major Obstacle: Entropy Collapse

What affect the coefficients? R = —aexp(H)+0b
 The coefficients are algorithm-irrelevant

 The policy model and training data are relevant

Qwen2.5 Model Family
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A Major Obstacle: Entropy Collapse

What affect the coefficients? R = —aexp(H)+0b
 The coefficients are algorithm-irrelevant
 The policy model and training data are relevant

 We can even predict the coefficients of large models from small models
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parameter counts (B) without embeddings. a, b are obtained from experiments in Sec. 2.4. We use log-linear
function to fit the curve.



A Major Obstacle: Entropy Collapse

The observation seems pessimistic @

The ceiling not only exists, but also is predictable

Does RL merely elicit the latent behaviors in the base model?

Does RL for LLM just Trade Entropy for Performance ?
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A Major Obstacle: Entropy Collapse

Without intervention, e.g., entropy or KL regularization, policy entropy is traded for reward predictably
during RL. The empirical quantitative relationship between validation reward R and policy entropy H

can be expressed as R = —aexp(H + b). Then:
* [t suggests the predictability of policy performance from entropy;
* The coefficients a, b reflect internal characteristics of policy and data;

e The performance ceiling of the policy (H = 0, R = —a + b) greatly burdens the scalability
of RL for LLM reasoning.




Understanding Entropy Dynamics

We want to break the ceiling
 So we need to understand the dynamics of policy entropy
At each step, what makes entropy decrease and what makes it increase?

* Analyze step-wise entropy difference

H(mgth) — H(xh)



Understanding Entropy Dynamics

Entropy Dynamics of Softmax Policy

o exp(2s.a)
* LLMs are Softmax policies mo(als) = > wrenp(2s.ar)
a’ € s,a

* Proportional to the covariance of and logits difference

Lemma 1 (Entropy difference of softmax policy) (Proofin Appendix B.2, adapted from Liu (2025)) Assume
that policy g is a tabular softmax policy, where each state-action pair (s, a) is associated with an individual
logit parameter z; , = 05 4, the difference of policy entropy given state s between two consecutive steps under

first-order approximation satisfies

H(mp ) —H(rlk) ~ Esnd,, [’H(WSJFHS) — H(ms]s)] ~ Esnd., [—Covawﬂg(_m ( , zfﬁl _ zfa)}

Jiacai Liu, https://zhuanlan.zhihu.com/p/28476703733



Understanding Entropy Dynamics

Entropy Dynamics of PG/NPG

 For PG-like algorithms

Theorem 1 (Entropy change under policy gradient) Ler the actor policy my be a tabular softmax policy,
and ¢ be updated via vanilla policy gradient, the difference of policy entropy given state s between two
consecutive steps satisfies

H(my ™ s) — H(EE]s) m =1 Covyn( oy ( w4 (als) - As, a))

 For NPG-like algorithms

Theorem 2 (Entropy change under natural policy gradient) (Proof in Appendix B.4) Let the actor policy
g be a tabular softmax policy, and g is updated via natural policy gradient (Kakade, 2001), the difference of
policy entropy given state s between two consecutive steps satisfies

%(Wg+1|8) o H(ﬂ-g|8) ~ =N Covawwg(-|s) ( 7A(Sa G))

Jiacai Liu, https://zhuanlan.zhihu.com/p/28476703733



Understanding Entropy Dynamics

Entropy Dynamics of PG/NPG

For PG/NPG, logits change is proportional to action advantage

Theorem 1 (Entropy change under policy gradient) Let the actor policy mg be a tabular softmax policy,

and g be updated via vanilla policy gradient, the difference of policy entropy given state s between two
consecutive steps satisfies

H(mys) — H(EE]s) m —n - Covyn( sy ( 74 (als) - As, a))

Theorem 2 (Entropy change under natural policy gradient) (Proof in Appendix B.4) Let the actor policy

my be a tabular softmax policy, and g is updated via natural policy gradient (Kakade, 2001), the difference of
policy entropy given state s between two consecutive steps satisfies

%(Wf‘;ﬂ+1|8) o 7‘[(71'5|8) ~ —n: Covawwg(-|s) ( 7A(S: CL))




Understanding Entropy Dynamics

Empirical Verification

 Under on-policy PG

Covarv'zrg(-\s) (log W@(CL ‘ S)a 71-!9(0' ‘ 5) ) A(Sa CL)) — COUyN’J‘TQ('|w) (logﬂ.ﬂ(y | éB),?Tg(y | af;) ’ A(ya LB))

0.0200 0.040

- 0.008 —— Accuracy=0.125
0.0175- Covariance r0.035 - Accuracy=0.5
. y=0.
—— Difference of Entropy
0.0150+ r0.030 0.006 - = Accuracy=0.875
Q
Y 0.0125/ 10.025 = v
c 8’ C
© 0.0100{ 10,020 5 .2 0.004
| - c m
g 0.0075 0.015 LW =
o > Q 0.002
O 0.0050 10.010 | @)
0.0025 | 10.005
0.000 -
0.0000 1 £0.000
—0.0025—4 500 1000 1500 2000 0005 0 250 500 750 1000 1250 1500 1750
Steps Steps

Figure 8: Left: The dynamics of policy entropy (step-wise entropy difference) and covariance during on-policy
GRPO training. They show similar trends as expected from the theoretical results. Right: Different prompt
groups show distinct covariance behaviors. Easier prompts with higher accuracy has higher covariances as
well, while harder prompts have lower covariances.



Understanding Entropy Dynamics

B TaKEAwAY \

(1) For softmax policy including LILLMs, the change of policy entropy is determined by the covariance
between the log-probability and the change in logits of actions.

(2) For Policy Gradient and Natural Policy Gradient, the change in logits is proportional to the action
advantage, meaning that a high covariance leads to quick decrease of policy entropy, as observed in RL
for LLM reasoning.




Get Entropy Controlled

Can we directly use entropy regularization in RL?

* Entropy loss: sensitive to coefficients, no performance gain @
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Figure 9: The policy entropy and validation accuracy of adding entropy loss where Ley = L — aH(mg). L is
the original loss and « 1s the coefficient of entropy loss.



Get Entropy Controlled

Can we directly use entropy regularization in RL?

 Reference KL: control entropy at the cost of performance drop @
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Figure 10: The policy entropy and validation accuracy of adding KL penalty between policy and reference
model where Lx; = L + Dk (mwg||mer). L is the original loss and f3 is the coefficient of KL loss.



Get Entropy Controlled

Lessons learned from entropy dynamics analysis
* All update steps have positive average covariance (100%)
* The average is small but positive

 There are outliers with high covariance (500x mean value)

Table 1: Covariance distribu-
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Get Entropy Controlled

Guidelines for entropy control
* We only need to interfere a small portion of tokens for stability

* Restrict the update of high-covariance tokens

Table 1: Covariance distribu-
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Get Entropy Controlled

Guidelines for entropy control
 Two simple techniques: Clip-Cov and KL-Cov

e Strictly follow the surrogate loss in PPO

s

L (9) = E, [min(n(f?)ﬁt; clip(r(6),1 —€,1 + E)ﬁf)]

LILPEN () — IAE{ mo(as | St) A, — BKL[mg. (- | 5), mo(- | St)]]

ﬂ_gold(at | St)

Schulman et al., Proximal Policy Optimization Algorithms



Get Entropy Controlled

def compute_policy_loss(old_log_prob, log_prob, advantages,
Guidelines fo select_ratio, method, **args):
ratio = exp(log_prob - old_log_prob)
Pg_lossesl = -ratio * advantages
° . + # calculate token wise centered cross - product
TWO Slmpl + covs = (log_prob - log_prob.mean()) * (advantages - advantages.mean
)
. i select _num = int(select_ratio * len(pg_lossesl))
L Str|Ct|y fOI if method == "clip_cov":
pg_losses2 = -clip(ratio, args["clip_range_1b"], args["
clip_range_ub"]) * advantages
+ # randomly select index to be detached
+ clip_idx = random_select(covs[covs > args["cov_1b"] & covs <
args["cov_ub"]], num=select_num)
+ pg_lossesl[clip_idx].detach_()
+ pg_losses2[clip_idx].detach_()
pg_loss = maximum(pg_lossesl, pg_losses2) .mean ()
if method == "kl_cov":
kl1_coef = args["kl_coef"]
k1l_penalty = (log_prob - old_log_prob).abs()
- Pg_losses = pg_lossesl + kl_coef * kl_penalty
+ # find out index with highest conviriance
+ select_idx = topk(covs, k=select_num, largest=True)
+ # apply KL penalty of these samples
+ peg_lossesl[select_idx] += kl_coef * kl_penalty[select_idx]
pg_loss = pg_lossesl.mean ()
return pg_loss




Get Entropy Controlled

Clip-Cov and KL-Cov

* Theyindeed get entropy controlled
ratio=7%o0 —— kl-coef=1
ratio=5%o0 0.5 —— kl-coef=0.5
ratio=4%o0 0.4 —— kl-coef=0.1
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Figure 12: Differences in entropy dynamics of Qwen2.5-7B under varying KL coefficients and clip ratios,
evaluated in KL-Cov and C1lip-Cov settings, respectively.



Get Entropy Controlled

Clip-Cov and KL-Cov

 Get higher entropy and better performance
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Figure 11: Training Qwen2.5-7B (Up) / Qwen2.5-32B (Down) with GRPO with/without our methods. Left:
Entropy dynamics. Our methods uplift policy entropy from collapse, enabling sustained exploration. Middle:
Our method also incentivizes longer responses compared with vanilla GRPO. Right: The policy model
consistently outperforms baseline on testsets, avoiding performance plateaus.



Get Entropy Controlled

Clip-Cov and KL-Cov

 Get higher entropy and better performance

Table 2: Detailed results of GRPO, GRPO with clip-higher technique and our methods. For AIME and AMC,
the results are avg. @32. Bold denotes the best results.

Method AIME24 AIME25 AMC MATH-500 OMNI-MATH OlympiadBench Minerva Avg.
Qwen2.5-7B

GRPO 21.2 9.6 58.7 78.8 27.9 40.7 36.7 38.6

w. Clip-higher 18.1 11.5 56.6 79.2 29.8 43.3 40.4 38.8

w. CLIP-Cov 22.1 15.8 58.2 80.4 30.5 44.1 41.1 40.4

w. KL-Cov 22.6 12.9 61.4 80.8 29.1 42.6 38.2 40.6
QOwen2.5-32B

GRPO 21.8 16.2 69.7 84.2 35.2 43.6 45.5 45.8

w. Clip-higher 35.6 22.3 69.5 77.2 35.1 42.5 43.0 47.2

w. CLIP-Cov 32.3 LA 67.2 87.0 42.0 57.2 46.0 50.3

w. KL-Cov 36.8 30.8 74.5 84.6 39.1 49.0 46.3 52.2




Get Entropy Controlled

B Tacenwar N

We can control policy entropy by restricting the update of tokens with high covariances, e.g.,
clipping (Clip-Cov) or applying KL penalty (KL-Cov). These simple techniques prevent policy from
entropy collapse thus promote exploration.

\_ J




Closing Thoughts

LLMs are general-purpose, strong priors as the policy in RL

As expected, we see improvements in many fields

However, most RL is just reinforcing the self confidence of LLMs, make it
a more stable but less exploratory policy

Stronger model with narrower distribution

Is it a blessing or a curse?



Thanks!

Ganqu Cui*, Yuchen Zhang?*, Jiacheng Chen*, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang, Yu Cheng,
Bowen Zhou, Ning Ding
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