Fast-dLLM: Training-free Acceleration of Diffusion LLM
by Enabling KV Cache and Parallel Decoding

Presenter: Chengyue Wu

Why Diffusion LLM

. Mercury and Gemini Diffusion LLM show superior speed vs AR LLM with
comparable performance

Vinte 2 functicn for LM olerence

Mercury Coder Mercury Coder Gemini 2.0 Claude 3.5 GPT-40 Mini Qwen 2.5
Mini Small Flash-Lite Haiku Coder7B
Throughput (toks/sec) 1169 737 201 61 59 207
HumanEval 88.0 90.0 90.0 86.0 880 90.0
MBPP 771 76.6 75.0 780 746 80.0
EvalPlus 78.6 804 773 751 785 793
MultiPL-E 741 76.2 79.5 723 720 753
LiveCodeBench 170 250 18.0 310 230 9.0
Herations Herations
29 1 4 BigCodeBench 420 455 444 454 46.8 414
. : Fill-in-the-Middle 822 84.8 60.1 455 60.9 56.1

Completec

AVTOREGRESSIVE LLM INCEPTION DIFFUVSION LLM
LT TO SIOHT SENERATION COAREE PISINE SENIBATION

| Open-Sourced Masked Diffusion

. Comparable performance vs AR LLM but MUCH LOWER

70 LLaDA 8B 30 LLaDA 8B

L1aMA3 8B w/ KV Cache L1aMA3 8B w/ KV Cache

60 LIaMA3 8B wio KV Cache 25 LIaMA3 8B wio KV Cache
¥ MMLU-pro %5 o
= K]
4 = s
Qa0 15
30 10
S
\ 20
70 10 2 30 50 60 70 10 20 30 40 50 60 70 80
MMLU

5 0 40
MMLU Throughput (tokens/s) Throughput (tokens/s)

Mathematics

= LLaDA 8B Instruct
—— LLaMA 3 8B Instruct
= LLaMA 2 7B Instruct

HumanEval

— LLaDA 8B Base
—— LLaMA 3 8B Base
—— LLaMA 2 7B Base

LLaDA 8B
L1aMA3 8B w/ KV Cache
L1aMA3 8B w/o KV Cache

50

LLaDA 8B
L1aMA3 8B w/ KV Cache

» LIaMA3 8B wio KV Cache
=25
C-Eval s} B
MBPP Q é = g
O MBPP £ =
© T s 2
HumanEval
10
10
-~

20 40 60 S0 100 120 140 160
Throughput (tokens/s)

20

30 40
Throughput

S0 60 70
(tokens/s)

Figure 5: Analysis of Sampling Efficiency. The generation length for LLaDA is set to 256, with
sampling steps set to 32, 64, 128, and 256 across the figures. LLaDA enables a flexible trade-off
between generation quality and sampling speed.

I Overview of MDM

® Pretrain: Randomly predict the mask token with ratio t~U(0,1), full attention
® SFT: Only predict the mask token at the response part
® Inference with multi-steps. Each step predict all the tokens while preserve few.

(@) Mask all tokens independently (b) Prompt Response (©) Prompt Response
= : ‘ ST t=1
i Mask ratio t ~ U(0,1) H e
=Y X =y i XX X |,
} } ;] 2
Mask predictor Mask predictor . Mask predictor %
D
} j Voo P4 Li[E
(]
a
Remask v . Y 8
] Mask token 4 Remask =<
Non-mask token § Random mask =
t=0%

Figure 2. A Conceptual Overview of LLaDA. (a) Pre-training. LLaDA is trained on text with random masks applied independently to all
tokens at the same ratio ¢ ~ U[0, 1]. (b) SFT. Only response tokens are possibly masked. (c) Sampling. LLaDA simulates a diffusion
process from ¢ = 1 (fully masked) to ¢ = 0 (unmasked), predicting all masks simultaneously at each step with flexible remask strategies.

I Inference details

® There are 3 ways to do generation for MDM
O Fix-length: can only generate a fixed number of tokens

O Semi-AR-origin: generate blocks by blocks, each blocks with fixed number of tokens
O Semi-AR-Padding: for a fixed number of tokens (may be very long), generate each block
from left to right
® All the methods discard tokens after the first <EOS> (end of sentence) token.

® For each step in the above three sampling processes, MDM first predicts all masked tokens

simultaneously. A certain proportion of tokens are remasked: randomly remasking or low-
confidence remasking.

Prompt Response Prompt Response Prompt Response
SIS r=1
X' XXX XX <D<
OO <D< <<
<X - me< X=xa= L=
m - - - - .,

Fix-length Semi-Autoregressive-Origin Semi-Autoregressive-Padding

I Limitations

® [Efficiency is even worse than AR (for open sourced MDM, not mercury)
O LLaDA samples with a fixed context length;
O LLaDA cannot yet leverage techniques like KV-Cache;

O LLaDA achieves optimal performance when the number of sampling steps
equals the response length. Reducing the number of sampling steps leads

to a decrease in performance.
O Full attention is slower than causal attention
® Masked token prediction is independent

[=))
(=]
ot)
w
=1

GSMSK (4-shot)
B
(=]
E
S

)
IS

Human
S

64 128 256 512 1,024 64 128 256 512 1,024
NFEs NFEs

Figure 5. Analysis of Sampling Steps.

Independent Sampling Case

® Prompt: Write a brief introduction of Geoffrey Hinton. Left with 64 steps, right with
8 steps

LLaDA - Large Language Diffusion Model Demo LLaDA - Large Language Diffusion Model Demo

Conversation Conversation
Write a brief introduction of Geoffrey Hintc...

Write a brief introduction of Geoffrey Hintc..
Geoffrey Hinton is a British computer scientist and one of the pioneers of deep learning. He is best known for his work on artificial neural

networks, which are computational models inspired by the structure and function of the human brain. Hinton has made significant

Geoffrey Hinton is a British author known best known, perhaps, as the author of the William the Fingingbird series. books novels the series.
contributions to the field of machine learning and artificial intelligence.

Word Constraints

This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon’ and 11th word 'time’, would be: '0:Once, 5:upon,
10:time

Word Constraints

This model allows for placing specific words at specific positions using 'position:word' format. Example: 1st word once, 6th word 'upon' and 11th word 'time’, would be: '0:0nce, 5:upon,
10:time

I Acceleration Results

e We improve the parallel tokens 3x by designing a new dynamic inference schedule based on
confidence

e Implement a approximate kv cache for diffusion llm and achieve 3x acceleration
Combine these two designs, we achieve 9x speed up under the setting of GSM8k, 256 generation
length, bsz=1 where one AR baseline is llama3-8B with throughput of 37 tokens/s in A100

e When the gen length and prefill length get longer, we achieve over 27x acceleration with minimum
degradation

eeeeeeeeeeeee 7
30 (@
° . - 60 -
= 3
ge 25 §
> 50 %
8 r 220 Kl
< 15 2
=7 308
3 H
:m MA-3- 1.0 -g
LY 5.3x F. 203
e ast H 2
H >0 05 H
s, ° o g 0"
o D 0.0
7 o
“_avb wcaa\e *Paﬁ,\\»\ *ea“‘“‘\
Weoht weor el
20 30 a0 \}DM“
Throughput (Tokens/sec) w
(a) Throughput vs. Accuracy across methods (b) Throughput and tokens per step across methods
GSMBK (8-shot) Gen. Length=1024 Acc=77.3
LLaDA
1024 steps Latency per sample: 266s, Throughput: 0.7 tok /s
+Parallel 13.3x
~100 steps 26s, 9.3 tok/s
+PrefixCache 1.4x
5120 stape 205,130 tok/s
2.1 H
+DE$[,%§2; - GSMBK (8-shot) Gen. Length=1024 Acc=76.0 }
: 27.6x g

(c) End-to-end speedup over vanilla LLaDA baseline.

I Acceleration Dimension (1)

® Parallel Sampling (output multiple tokens per step)

Algorithm 1 Block-wise Confidence-aware Parallel Decoding with (Dual) KV Cache

Require: pg, prompt pg, answer length L, blocks K, block size B, steps per block 7', threshold 7, use_DualCache
1: ¢ [po; [MASK],..., [MASK]]
2: Initialize KV Cache (single or dual) for « (fuse with decoding). // KV Cache Init
3: for k=1to K do
4 s« |po|+ (k—1)B, e < |po| + kB
5 fort =1to T do
6: Use cache, run pg on zl$e) if use_DualCache else zls?) // Cache Reuse
iy
8
9

For masked z*, compute confidence ¢! = max, pg(z¢|-)
Unmask all 4 in [s, €) with ¢* > 7, always unmask max c’
if all 2[*®) unmasked then

10: break

11: end if

12: end for

13: Update KV cache: if use_DualCache: prefix & suffix; else: prefix. // Cache Update
14: end for

15: return x

I Mathematical Intuition

Mathematical Proof

Proof
Let the known tokens be denoted as the set w. . .
. . o . . By the probability addition rule for any two events A, B :
Let ¢ and j be the indices of two unknown tokens, and let ki, ko be their possible values.

According to the conditions given: p(AU B) = p(4) +p(B) = p(AN B)

1. p(i = k1Jw) > 1 — € where ¢ = 0 Rewriting:
2. p(j = kalw) >1—6 where § — 0 p(ANB) =p(A) +p(B) —p(AU B)
Goal: Since probabilities cannot exceed 1 (p(A U B) < 1), we have:

Prove that p(i = k1,7 = kaJw) > 1 — O(e + 9)
p(ANB) > p(4) +p(B) -1

o) L Let A betheevent “i = k;”, B bethe event “j = ky ” (both conditioned on w). Then:

e Main idea: two large marginal probabilities

can lead to large combination probabilities
(avoid independence)

p(i=ki,j=ky|w) > p(i =k |w) +p(j =k | w) -1
Substitute the given lower bounds:
pli=kij=h w)>(1-e+1-8)-1=1-¢c35
Therefore,
p(i = ki, =hy | w) 21— (e+8) =1 - O +9)

Q.E.D.

I Mathematical Proof

e \We need to prove the argmax of marginal distribution is equal to the joint distribution

Prior to presenting the theorem, we will define the mathematical notation used in its statement. Let pg(-|E) denote the
conditional probability mass function (PMF) given by an MDM condition on E (comprising a prompt pg and previously
generated tokens). Suppose the model is to predict n tokens for positions 41, . .., i, notin E. Let X = (X;,,...,X;,)
be the vector of n tokens, where each X;, takes values in vocabulary V. Let p(X|E) = po(X;,, ..., X;,|E) be the
joint conditional PMF according to the model. Let p;(X; |E) = pg(X;,|E) be the marginal conditional PMF for
position 4. Parallel decoding generates tokens using the product of marginals: ¢(X|E) = H;L:1 p;(Xi;|E). The proof
of Theorem 1 and relevant discussions are in Appendix A.

Theorem 1 (Parallel Decoding under High Confidence). Suppose there exists a specific sequence of tokens x* =
(%iy, ..., %4,) such that for each j € {1,...,n}, the model has high confidence in x;;: p;(X;, = x;;|E) > 1 — € for
some small € > 0. Then, the following results hold:

1. Equivalence for Greedy Decoding: If (n + 1)e < 1 (i.e., e <), then

_1
n+1

argmax p(z|E) = argmax ¢(z|E) = z*. 4)

This means that greedy parallel decoding (selecting argmax q) yields the same result as greedy sequential decoding
(selecting argmax p).

This bound is tight: if € > n%rl, there exist distributions p(X |E) satisfying the high-confidence marginal assumption

for which argmax, p(z|E) # argmax, q(z|E).

I Mathematical Proof (step 1)

Proof. Step 1: Show that x* is the unique maximizer of ¢(z).

Let p; = p;(Xi;, = z;;|E). We are given p; > 1 —e. Lete; = 1 — p; = p;(Xi; # z;,;|E). Thus, €; < €. The
product-of-marginals probability mass function (PMF) is

n

ZlE HpJ i —Z]|E)

To maximize g(2|E), we must maximize each term p;(X;, = z;|E) independently. The condition (n + 1)e < 1 implies
€ <1/(n+1). Since n > 1, it follows that 1/(n + 1) < 1/2. So, € < 1/2. Therefore, for the chosen z; :

p; =pj(Xy, =a|E)>1-e>1-1/2=1/2.

This means z;; is the unique maximizer for p;(-|E). So,

*

argmax q(z|E) = (z;,,...,z;,) = x*.

~

I Mathematical Proof (step 2)

Step 2: Show that z* is the unique maximizer of p(z).

We want to show p(x*|E) > p(z|E) for all z # x*. Using the Bonferroni inequality:
p(a*|E) = p(M_{Xi, =2, }E) > 1= p(X;, #zi,|E)=1-) €.
j=1 j=1

" €. < ne. So,

. , .
Since €; <€ for all j, we have E].:I ;

p(x*|E) > 1 —ne.

Now consider any z = (21, ..., z,) such that z # =*. This means there is at least one index k such that z;, # z;, . The
event { X = z} is a sub-event of {X;, = z;}. So,

p(2|E) < pi(Xs, = 2| E).

Since zi, # i, ,
(X, = 2| E) < pi(Xs, # 24, |E) =€), <.

Thus,
p(z|E) <e.

For p(x*|E) > p(z|E) to hold, it is sufficient that
1—ne>e,

which simplifiesto 1 > (n+ 1)¢, ore < n%rl The theorem assumes (n + 1)e < 1, which is exactly this condition. The

strict inequalities p(z*|E) > 1 — 3¢’ > 1 — ne and p(z|E) < €} < € ensure that p(z*|E) > p(z|E). Thus,
argmax p(z|E) = z*.
z
Combined with the argmax of g, this proves the main statement of Part 1:

argmax p(z|E) = argmax ¢(z|E) = =*.
z z

I Confidence Qualitative Results

e Analyze the token idx and confidence of each step during 128 steps inference
(gen. length=128, block size=32)
e Overall the confidence is relatively high and the order is from left to right

Confidence Changes During Generation Selected Token Indices During Generation

eeeeeeeeeeeeee

I Dynamic Threshold

® \We also demonstrate that based on the mathematical proof, we can use a dynamic
threshold to select the tokens that have the confidence to be selected “safely” with
(n+1)*eps<1.

® The results are not reported in the paper but we find that it raises the throughput
from 54 to 78 tokens/sec at GSM8K-5shot with the same accuracy.

factor =

for j in range(confidence.shape[0]):
ns=list(range(1,num_transfer_tokens[j]+1))
es=[factor/(n+1) for n in nsl
threshs=[1-e for e in es]

threshs[0]=-1
sorted_confidence=torch.sort(confidence(j] [mask_index[jl],dim=-1,descending=True) [0]
assert len(sorted_confidence)==1len(threshs)

for top_i in range(len(threshs)):
if sorted_confidence[top_il<threshs[top_il:
break

if top_i == @ or top_i == len(threshs)-1:
top_i+=1

_, select_index = torch.topk(confidence[jl, k=top_i)
transfer_index[j, select_index] = True

I Threshold curve

® Under the setting of GSM 8K, 256 length, we evaluate different thresholds
compared with llada previous fixed-N tokens baseline

® QOur method has great robustness towards threshold and improve the
performance at large parallel scale.

300
5 801 a.2a 3.25 1.00 —&— Ours 1.00 > 80 -
9 y ~ = 2 tokens per step I o
E v 2507 . 4 tokens per step E
3 7017.01 a == 8 tokens per step 3 704
B2 @ 200 <
e
— 60 —&— Ours ") - 60 4
‘6 ~ = 2 tokens per step o ‘6‘
= == dr O 150 £
] okens per step c]
H 504 — = 8 tokens per step E / \h 50 1
: ‘g 1001 3.25 Selected ;
0 40 - = ® 0 40
= 50 = -~ Ours
3 3 -A- Fixed-Step Baseline (2/4/8 tokens) SR
B e s e o T S e e g e s ey e 309 ——~ Non-Paraliel Baseline (1 token/step) g
T T T T T T 0 r r r r T T T T T T
0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 09 1.0 0 2 4 6 8
Threshold Threshold Average #Tokens per Step

(@) (b) (c)

I Acceleration Dimension (2)

® KV Cache for Diffusion LLM

Prompt Block 0 Block 1 Prompt Block 0 Block 1
; 1T 10 |t=1— T YT . VI L ‘t=1— ..
/{%ﬁ%% 1 %%7/? 1 % Prompt token

. 3 1 4
.... . Cached token

— MASK token

| |

1111111
Il-llll1
=== Decode token

| 1 |
L L S [[[[[[L A

(a) Prefix KV Cache for block-wise generation. (b) DualCache: Bidirectional KV cache contains prefix
and suffix Cache.

1 l Decoded token

1
L]
L]
1 | |
[

=== Compute cache

Figure 2 | Illustration of our Key-Value Cache for Block-Wise Decoding. (a) During prefix-only caching, the KV
cache is computed once for the prompt and reused across multiple decoding steps within each block. The cache is
updated after completing a block to maintain consistency, with negligible overhead. (b) DualCache extends this approach
by caching both prefix and masked suffix tokens, further accelerating decoding. The high similarity of KV activations
across steps allows effective reuse with minimal approximation error.

I Cache Intuition

® Visualize the KV of the prompt after every inference step and find that within a block the variance is
relatively small, which means we can cache previous kv within one block inference and update it when
the current block is finished.

® Value at position (i, j) represent f(kv_i, kv_j), where f is a similarity metric, kv_i and kv_j is the kv activation at
step i and j. When i is close to j, the similarity is relative high

Prompt's Key-Value Activation Cosine Similarity Heatmap Last Block's Key-Value Activation Cosine Similarity Heatmap
1.00

Inference Step

o
©°
N
Cosine Similarity
=3
o
&
Cosine Similarity

Inference Step

!\ " High Cosine similarity for
] i he

@
-]

0.92

peighborhood blocks
N
N

imilarity is very low
0.86 are far apart

40 60 80

a0 60 80
Inference Step Inference Step

(a) Prompt block (b) Last block

I Performance under different cache block size

® Smaller block sizes tend to maximize accuracy but incur overhead due to frequent
cache updates
® | arger block sizes may diminish accuracy owing to increased context mismatch.

® Bilock size of 32 achieves the best trade-off

Selecte d
i ./’.\./
=
No cache

>
o 75
©
.
3
v
v
<7
3
2 edu;
P6
a
¥
©
= 6
]
(Y]

5

1) 16 32 [} 128 256

Cache Block Size

Figure 4 | Impact of Cache Block Size on Accuracy
and Throughput. The orange line illustrates the effect
of varying cache block size on throughput, while the blue
line depicts the corresponding impact on accuracy.

I Parallel sample visualization

® \isualize parallel sample process showing the token position and numbers of
tokens each step produced

® [eft is llada without parallel sampling and right is for parallel samping

Generation Step 1 Generation Step 1
Artificial MASK MASK MASK MASK MASK MASK Atificial intelligence MASK Al MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK
MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK MASK —
MASK =

Color Legend Color Legend

Step 0 Step 8 Step 16 Step 24 Step 32 Step 40 Step 48 - - Step 0 Step 8 Step 16 Step 24 Step 32 Step 40 Step 48 - -

I Qualitative Results

® Our acceleration well maintains the previous LLaDA performance

Table 5 | Qualitative comparison of responses across methods.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Original

PrefixCache

DualCache

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, it takes 2 bolts + 1 bolt = 3 bolts
of fiber. The final result is 3

Table 6 | Qualitative comparison of responses with varying block size for DualCache.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Block Size 8

Block Size 16

Block Size 32

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3

Table 7 | Qualitative comparison of responses under different threshold settings.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Threshold 0.7

Threshold 0.8

Threshold 0.9

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, it takes takes 2 + 1 = 3 bolts of
fiber. So, the value is 3 (NFE: 9)

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3 (NFE: 12)

The robe takes 2 bolts of blue fiber.

It also takes half that much white fiber, so
it takes 2/2 = 1 bolt of white fiber.

In total, the robe takes 2 + 1 = 3 bolts of
fiber. So, the value is 3 (NFE: 20)

I Quantitative Results

® Our acceleration well maintains the previous LLaDA performance

Table 1 | Comprehensive benchmark results on the LLaDA-Instruct suite. Each cell presents the accuracy and the
decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, blue: tokens per

second/). The highest throughput and speedup for each configuration are highlighted.
Benchmark Gen Length | LLaDA +Cache +Parallel +Cache+Parallel (Fast-dLLM)
256 79.3 79.5 79.2 78.5
GSMSK (5-shot) 6.7 (1x) 21.2¢() 16.5¢() 54.4()
512 115 71.0 77.6 772
32(1x) 104 (33x) 18.6(5.8%) 35.3()
256 335 333 334 332
MATH (4-shot) 9.1 (1x) 23.7(2.6x) 24.8() 51.7¢)
512 37.2 36.2 36.8 36.0
8.0(1x) 19.7() 23.8¢() 47.1()
256 41.5 42.7 439 433
HumanEval (0-shot) 30.5 (1<) 40.7() 101.5¢() 114.1 ()
512 439 45.7 433 445
18.4 (1) 29.3() 571) 7374)
256 294 29.6 28.4 28.2
MBPP (3-shot) 6.0(1x) 17.0() 24.8¢() 44.8 ()
9512 14.8 13.4 15.0 13.8
43 (1x) 10.1¢() $22:3)() B9ISI()

I Quantitative Results

® Our acceleration well maintains the previous Dream performance

Table 2 | Comprehensive benchmark results on Dream-Base variants over four tasks with different generation lengths
(256 and 512). Each cell shows accuracy (top row) and decoding throughput in tokens per second with relative speedup
to Dream-Base baseline (bottom row, blue: tokens per second/). Numbers in yellow indicate the
highest throughput and speedup per configuration.

Benchmark Gen Length | Dream +Cache +Parallel ~ +Cache+Parallel (Fast-dLLM)
256 75.0 74.3 74.2 74.8
GSMBK (5-shot) 9.1 (1x) 32.5¢() 14.2() 482 ()
512 76.0 74.3 73.4 74.0
TT(x) 256¢() 14.6 () 42.9 ()
256 38.4 36.8 379 37.6
MATH (4-shot) 114 (1x) 34.3() 27.3i() 66.8 ()
512 39.8 38.0 39.5 39.3
9.6 (1x) 26.8() 31.6¢() 63.3 ()
256 494 53.7 494 54.3
HumanEval (0-shot) 233 (1x) 35.2¢() 45.6() 62.0 ()
512 54.3 54.9 51.8 54.3
16.3 (1x) 27.8() 29.8¢() 52.8 ()
256 56.6 532 53.8 56.4
MBPP (3-shot) 11.2 (1x) 34.5¢() 31.8¢() 76.0 ()
512 55.6 53.8 55.4 55.2
94 (1x) 26.7() 37.6() 73.6 ()

I Ablations

® [onger prefill and gen. length will raise the acceleration speedup.
® DualCache gains more acceleration under longer gen. Length setting

Table 3 | Performance and Speedup Comparison on
LLaDA Between 5-Shot and 8-Shot Settings at Gen-
eration Length 1024. This table compares the accuracy
and throughput speedups of different decoding strategies
under 5-shot and 8-shot configurations using a generation
length of 1024. The results demonstrate how increased
prefill length enhances the effectiveness of caching strate-
gies, particularly for DualCache.

Parallel Decoding

Setting. | LLaDA No Cache PrefixCache DualCache
e 77.0 77.4 75.2 74.7
1.1(1%) | 11.7(10.6%) 144 (13.1x) 21.6 (19.6%)
i 713 78.0 75.7 76.0
~$ho 0.7 (1x) | 93¢) 13.0(18.6x) 193 (27.6x)

Table 4 | Impact of Generation Length on Accuracy
and Speedup Under 8-Shot for LLaDA. This table il-
lustrates the effect of varying generation lengths (256,
512, and 1024) on decoding performance and efficiency
for different caching strategies under the 8-shot setting.
Longer generation lengths lead to higher throughput gains,
especially for DualCache, validating the scalability of our
approach.

Parallel Decoding

Len. el No Cache PrefixCache DualCache
256 77.6 77.9 77.3 76.9
4.9 (1x) 16.4 () 49.2() 46.3 ()
512 78.9 78.9 74.8 75.4
23(1%) | 14.0(6.1%) 32.0() 364 ()
713 78.0 75.7 76.0
1024 1 07(1x | 93(133%) 13.0(186x) 193 (27.6%)

Thanks for listening!

