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Why Diffusion LLM
● Mercury and Gemini Diffusion LLM show superior speed vs AR LLM with 

comparable performance
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Open-Sourced Masked Diffusion LLM
● Comparable performance vs AR LLM but MUCH LOWER
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Overview of MDM
● Pretrain: Randomly predict the mask token with ratio t~U(0,1), full attention
● SFT: Only predict the mask token at the response part
● Inference with multi-steps. Each step predict all the tokens while preserve few.
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Inference details
● There are 3 ways to do generation for MDM

○ Fix-length: can only generate a fixed number of tokens
○ Semi-AR-origin: generate blocks by blocks, each blocks with fixed number of tokens
○ Semi-AR-Padding: for a fixed number of tokens (may be very long), generate each block 

from left to right
● All the methods discard tokens after the first <EOS> (end of sentence) token.
● For each step in the above three sampling processes, MDM first predicts all masked tokens 

simultaneously. A certain proportion of tokens are remasked: randomly remasking or low-
confidence remasking.
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Limitations
● Efficiency is even worse than AR (for open sourced MDM, not mercury)

○ LLaDA samples with a fixed context length;
○ LLaDA cannot yet leverage techniques like KV-Cache;
○ LLaDA achieves optimal performance when the number of sampling steps 

equals the response length. Reducing the number of sampling steps leads 
to a decrease in performance.

○ Full attention is slower than causal attention
● Masked token prediction is independent
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Independent Sampling Case
● Prompt:  Write a brief introduction of Geoffrey Hinton. Left with 64 steps, right with 

8 steps
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Acceleration Results
● We improve the parallel tokens 3x by designing a new dynamic inference schedule based on 

confidence
● Implement a approximate kv cache for diffusion llm and achieve 3x acceleration
● Combine these two designs, we achieve 9x speed up under the setting of GSM8k，256 generation 

length, bsz=1 where one AR baseline is llama3-8B with throughput of 37 tokens/s in A100
● When the gen length and prefill length get longer, we achieve over 27x acceleration with minimum 

degradation
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Acceleration Dimension (1) 
● Parallel Sampling (output multiple tokens per step)
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Mathematical Intuition 

● Main idea: two large marginal probabilities 
can lead to large combination probabilities 
(avoid independence)
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Mathematical Proof 
● We need to prove the argmax of marginal distribution is equal to the joint distribution
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Mathematical Proof (step 1)
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Mathematical Proof (step 2)
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Confidence Qualitative Results
● Analyze the token idx and confidence of each step during 128 steps inference 

(gen. length=128, block size=32)
● Overall the confidence is relatively high and the order is from left to right
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Dynamic Threshold
● We also demonstrate that based on the mathematical proof, we can use a dynamic 

threshold to select the tokens that have the confidence to be selected “safely” with 
(n+1)*eps<1.

● The results are not reported in the paper but we find that it raises the throughput 
from 54 to 78 tokens/sec at GSM8K-5shot with the same accuracy.
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Threshold curve
● Under the setting of GSM 8K，256 length, we evaluate different thresholds 

compared with llada previous fixed-N tokens baseline
● Our method has great robustness towards threshold and improve the 

performance at large parallel scale.
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Acceleration Dimension (2) 
● KV Cache for Diffusion LLM
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Cache Intuition
● Visualize the KV of the prompt after every inference step and find that within a block the variance is 

relatively small, which means we can cache previous kv within one block inference and update it when 
the current block is finished.

● Value at position (i, j) represent f(kv_i, kv_j), where f is a similarity metric, kv_i and kv_j is the kv activation at 
step i and j. When i is close to j, the similarity is relative high
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Performance under different cache block size

● Smaller block sizes tend to maximize accuracy but incur overhead due to frequent 
cache updates

● Larger block sizes may diminish accuracy owing to increased context mismatch.
● Block size of 32 achieves the best trade-off
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Parallel sample visualization
● Visualize parallel sample process showing the token position and numbers of 

tokens each step produced
● Left is llada without parallel sampling and right is for parallel samping
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Qualitative Results
● Our acceleration well maintains the previous LLaDA performance



Weekly Report

Quantitative Results
● Our acceleration well maintains the previous LLaDA performance
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Quantitative Results
● Our acceleration well maintains the previous Dream performance
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Ablations
● Longer prefill and gen. length will raise the acceleration speedup.
● DualCache gains more acceleration under longer gen. Length setting
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Thanks for listening!


