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1. Introduction

2. How to define good synthetic data in self-improving?

3. SimpleRL-Zoo: RL for open base models in the wild

4. Future Directions
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Complex reasoning task
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Complex reasoning like math and coding is an important topic in recent research  

Wei J, Wang X, Schuurmans D, et al. Chain-of-thought prompting elicits reasoning in large language models[J]. Advances in neural information processing systems, 2022, 35: 24824-24837.
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Why RL?
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Data is not growing and we are 
hitting the data wall

Synthetic data is becoming the future 
fuel to power AI
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Synthetic Data in Post-Training
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•Synthetic data from stronger teacher

•Synthetic data from weaker teacher

•Synthetic data from self

[1] Burns et al. Weak-to-Strong Generalization: Eliciting Strong Capabilities With Weak Supervision. 2023

Requires existence of a stronger teacher

Requires existence of a stronger base model
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Synthetic Data from Self
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Good Data
Filter

Self-training

Traditional 
Self-Improving

(Online) Reinforcement 
Learning

Data

Generate

Offline Online
Each iteration faster and faster (generate less and update less)
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Why RL?
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SFT: Imitation learning, requires higher quality data

RL: Encourages free exploration, with higher potential

Hard to surpass the teacher
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Why RL?
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RL is a form of data synthesis to overcome the human data limitation

Good Data
Filter

Self-training

Data

Generate

How to manipulate the synthetic response quality?
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B-STaR: Monitoring and Balancing Exploration 
and Exploitation in Self-Taught Reasoners

Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang, Zifei Shan, Junxian He

ICLR 2025
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Strong2Weak Distillation v.s. Self-Improving

Data

Generate Train
Good Data

Filter

Good Data
Filter

Self-training Self-Improving

Reinforcement 
Learning

Data

Generate
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Why can Self-Training Work?

Data

Generate

Good Data
Filter

Self-training
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Why can Self-Training Work?

Data

Generate

Good Data
Filter

Self-training

The filter step provides external signal/supervision

We experiment with 1. final answer; 2. final answer + process-based reward model 
(PRM)   

13
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However, the current situation of self-improving is…

NO scaling law
Performance saturates quickly

14

Note: this is the self-improving 
paradigm before R1 comes 
out, the problem is the model 
generation/data synthesis is 
not frequent enough  
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What Matters in Self-Improving

Data

Generate

Good Data
Filter

Self-training
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What Matters in Self-Improving

Data

Generate

Good Data
Filter

Self-training

The model needs to be able to generate good responses 
when sampling multiple candidates  

16
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What Matters in Self-Improving

Data

Generate

Good Data
Filter

Self-training

The reward function needs to be able to distinguish good 
responses from bad ones

17
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Data

Generate

Good Data
Filter

Self-training

1. The model needs to be able to generate good responses 
when sampling multiple candidates  

2. The reward function needs to be able to distinguish good 
responses from bad ones

Exploration

Exploitation

What Matters in Self-Improving

Self-improving will not work if either exploration or exploitation lags 
behind – balance is important! 18
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However.. the ability of exploration and exploitation are dynamically 
changing, are they balanced in standard self-improving?

19
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Exploration

Exploration increases first, then saturates or drops
Model’s exploration decides the skyline

# training steps

20
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Exploitation

Exploitation saturates as well, but at a slower pace. It seems 
exploration lags behind! 

21
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How to measure the combined effect of exploration and exploitation?

Intuitively, it is like measuring the quality of the selected responses?

22
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What Makes Good Training Data?
1. The number of correct responses among the selected data should be large 
enough, otherwise we don’t have enough good training data

2. The ratio of correct responses among the selected data should be high, 
otherwise the training data is too noisy 

23
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What Makes Good Training Data?
: number of correct selected responses

: number of selected responses

: a minimum number of correct responses that we want

𝑛′￼𝑖

𝑛𝑖

𝑛⋆

Discount factor to penalize insufficient correct responses
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What Makes Good Training Data?
: number of correct selected responses

: number of selected responses

: a minimum number of correct responses that we want

𝑛′￼𝑖

𝑛𝑖

𝑛⋆

Ratio of correct responses among all the responses
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What Makes Good Training Data?
: number of correct selected responses

: number of selected responses

: a minimum number of correct responses that we want

𝑛′￼𝑖

𝑛𝑖

𝑛⋆

It is like a direct measure of the current, rollout data contribution



The Hong Kong University of Science and Technology

How can we maximize the query effect?

What factors influence exploration and exploitation?
Exploration: sample size K, rollout temperature t
Exploitation: reward selection threshold

27
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B-STaR (Balanced STaR): for every T training steps, we dynamically 
change sample size, rollout temperature, and reward threshold to 
maximize average query effect scores on a small training subset 

This is different from common practice where 
these configurations are treated static

We always want to maximize the rollout data contributions

28
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Query Effect Change of B-STaR

Monotonically increasing
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Main Results

Significantly better scaling

Pass@1 Accuracy

# training steps

30
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Exploration is also Improved
Pass@32 Accuracy

31
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How does B-STaR Change the 
Configurations?

Temperature increases gradually –>  encourage more exploration as training runs

32
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How does B-STaR Change the 
Configurations?

Sampling more is always better (we are not training more)

33
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The Deep Thinking Era Arrives…..

35
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Long Chain of Thought (CoT) 
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O1 Solution

Long Chain of Thought (CoT) 


+ certain cognitive behaviors 
(e.g., Self-Reflection)
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Efforts for Developing O1-style Models
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Many researchers are exploring possible paths towards learning o1-style models…

Tree Search Distillation
More complex during training and testing Hard to surpass teacher model 

Qin, Yiwei, et al. "O1 Replication Journey: A Strategic Progress Report--Part 1." arXiv preprint arXiv:2410.18982 (2024).
Zhang, Dan, et al. "Rest-mcts*: Llm self-training via process reward guided tree search." arXiv preprint arXiv:2406.03816 (2024).
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Long CoT Patterns Emerging in RL Training
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DeepSeek-R1 and Kimi-k1.5 choose the extremely simple recipe — Reinforcement Learning 

Model naturally develops long CoT during RL 

Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).

Not SFT, just base model
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Self-Reflection Emerging in RL Training
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Example: 

Without tree search and reward model, long CoT and self-reflection just naturally emerge. 

Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).



The Hong Kong University of Science and Technology

RL Training is not a new thing

40

But the emergence of 

Long CoT plus Self Reflection is new
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DeepSeek R1 Two Main Parts
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Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).

Deepseek’s Paper includes two main parts: 


• Deepseek R1 Zero: Just RL using the math and code data. 


• Deepseek R1: SFT + RL . Some SFT data is from R1-Zero.


• Accelerate the RL training.


• More user-friendly by adding some non-reasoning data.
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DeepSeek R1's Amazing Performance
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Performance: 

DeepSeek-R1 achieves performance comparable to OpenAI-o1 on reasoning tasks.

Guo, Daya, et al. "Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning." arXiv preprint arXiv:2501.12948 (2025).
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Deepseek-R1 conducts experiments on huge models in a large-scale RL setting. 

What about small model and limited data? 

Does RL works for small model and limited data?


Does long CoT and self-reflection emerge in this case? 
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SimpleRL: Emerging Reasoning with Reinforcement 
Learning is Both Effective and Efficient

Weihao Zeng*, Yuzhen Huang*, Wei Liu, Keqing He, Qian Liu, Zejun Ma, Junxian He*

* : Project lead

* many of the experiments were developed and performed by us independently before DeepSeek-R1’s release.
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The SimpleRL Recipe
We use the PPO algorithm, the training objective is:


Shao Z, Wang P, Zhu Q, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models[J]. arXiv preprint arXiv:2402.03300, 2024.
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The SimpleRL Recipe

•Rule-based reward function (Correctness and Format)

•If the answer is correct, reward = 1 

•If the format is correct but the answer is incorrect, reward = -0.5 

•If the format is incorrect, reward = -1

Rule-based 
reward

Many many reasoning steps….


Since \(3^{1/7}\) is the seventh 
root of 3, the minimum value is: 
\boxed{36}.

Format Example 
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In the following experiments, we only use 8K examples from MATH dataset. 
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Experiment Setup 
• Start from the Qwen2.5-Math-7B-Base model.

Using only 8K examples from the original MATH dataset, much less than other methods.

Evaluate on challenging math benchmarks, AIME, AMC …
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SimpleRL-Zero — RL from scratch 

Achieve gains of nearly 20 absolute points from base model. 
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Outperform Instruct model and achieves comparable results to PRIME with 50x data efficiency.

RL is applied directly to the base model using 8K MATH (query, answer) pairs without SFT.
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SimpleRL-Zero — RL from scratch 

Compared to SFT, RL generalizes to competition-level benchmarks and being 30 points higher in AIME
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Easy-to-hard generalization !
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The accuracy is improving on average, while the length decreases first and then gradually increases.

Surprisingly how far the 8K MATH examples lift this 7B base model without any other external signals. 

Training

SimpleRL-Zero — RL from scratch 

Evaluation

Phase 1 Phase 2 Phase 3 
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Almost all open reproduction of DeepSeek-R1 is based Qwen models, but Qwen 
models are kinda special. 


Are the conclusions from these works Qwen-specific? 
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SimpleRL-Zoo: Investigating and Taming Zero 
Reinforcement Learning for Open Base Models in the 

Wild

Weihao Zeng*, Yuzhen Huang*, Qian Liu*, Wei Liu, Keqing He, Zejun Ma, Junxian He

53
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Consistent Results

54
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Main Results

55
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RL Generalizes

56
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Revisit the Old Doubt on RL
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For a long time, a lot of people don’t believe RL can fundamentally improve 
model abilities

[1] Shao et al. DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models. 2024
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But it is different now

58

Model’s reasoning abilities are fundamentally improved



The Hong Kong University of Science and Technology

Response Length does not reflect 
the full story
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Response length increase of Mistral-7B is unhealthy
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Cognitive Behavior
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Response length is just a superficial metric, we should focus more on the true metric
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Format Reward is Not Always a Good Thing
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Applying format reward limits exploration in the initial stage and hurts 
particularly for weaker base models
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Data Difficulty, not too hard, not too easy

62
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Is Cold-Start Always a Good Thing for RL?

63

Revisit the pretraining -> short CoT SFT -> RL recipe Why RL fails in the past?

The worse it gets when we perform more SFT before RL
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Is Cold-Start Always a Good Thing for RL?
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The worse it gets when we perform more SFT before RL
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Future Directions
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GPT4 -> o1, how o1 -> o3?

o1 Base model 
for o3 

Synthesize
 data Base model 

for o1 

training
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Future Directions
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1. Reward for various environments

Direct seeking of rewards may be impossible for scalable RL in some tasks

3. CoT faithfulness

2. Native fast and slow thinking
Can we bypass long CoT to achieve scalable RL in LLM?

4. Unnatural reasoning chains
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Thank You!

68


