
Towards the Next-Generation
AI Agent Infrastructure
Yiying Zhang - GenseeAI and UCSD

GenseeAI

About Yiying Zhang

• Associate professor at UCSD CSE, leading the WukLab (wuklab.io)

• Founder and CEO of GenseeAI (gensee.ai), an agent infrastructure startup

• 15 years of experience in systems and infrastructure

• ~5 years in SysML, recent years focusing on LLM serving and agents

• Interested in joining GenseeAI as summer intern or founding engineer?

• email yiying@gensee.ai
2

http://wuklab.io

3

The Status of AI Agent
Easy to demo, extremely hard to productionize

4

 5x more time to productionize [AI Refinery] than to demo

The Status of AI Agent
Rising inference cost, esp. as agent involves more model calls

5
https://arcprize.org/blog/oai-o3-pub-breakthrough

Today’s AI agent development and deployment life cycle

6

Write evaluators and create
test workloads

Engineers build

AI agent logic

Change agent
structure

Curate data

Trial with
models

Deploy in
production

Prompt
engineering

Monitoring

Test
Execution

Tons of
Frameworks

Real

Headache

Improve
Code

Set up agent
serving infra CognifyPreble InferCept

Today’s Talk

Cognify [arxiv’25]: AI agent optimizer

Preble [ICLR’25]: long & shared prompt serving

InferCept [ICML’24]: compound LLM serving

7

Cognify: Multi-Facet AI Agent Optimization
Under submission, open source at https://github.com/GenseeAI/cognify

• AI Engineers spend a lot of effort tuning AI agents and workflows

• Cognify: aims to autotune AI agents and workflows with a small budget

• Key challenge: the search space is huge and proper searching needs $$

• A simple 4-step workflow could need $168K and weeks to search brute force

• AdaSeek: adaptive hierarchical BO-based search

• Uses $5 and 24 minutes to autotune the above workflow with 2.8x higher quality

8“Cognify: Supercharging Gen-AI Workflows With Hierarchical Autotuning”, Zijian He*, Reyna Abhyankar*, Vikranth Srivatsa, Yiying Zhang (* equal contribution)

https://github.com/GenseeAI/cognify

Challenge: Large Search Space but Limited Budget

9

Assuming 3 LLM steps in an agent workflow

12 configurations in total, each with 3 options

Grid search requires: (3)^12 = 531,441 runs !!!

Assume workflow

• use gpt-4o: $10/1M tokens

• each execution output 10K tokens

➡ $53K

What’s the best I can get with 128 trials ?

Our Approach: Adaptive Hierarchical Search

1. Hierarchical search with layered cog search space

2. Result-driven budget distribution

A. Search space partition

B. Search budget partition

3. Dynamic resource re-distribution

10

Cognify’s Solution: Hierarchical Search

11

High Dimension

Flattened Search Space Low Dimension

Low Dimension

Low Dimension

Cognify: Organize tuning knobs (cogs) hierarchically

12

Few-Shot Example Reasoning Prompts

Task Decomposition

Code Rewriting Model Selection

Top layer: Architecture Cogs Task Ensemble

Middle layer: Step Cogs

Bottom layer: “Weight” (Prompt) Cogs

Cognify’s Solution: Adaptive Search

• Partition search budget across hierarchies according to layer complexity

• Direct search budget to more promising configurations using SH

13

Architecture Cogs

Step Cogs

Weight Cogs

Evaluate Workflow

…

…

Best Results

Search Budget
(32 iterations)

$ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $
$ $ $ $ $ $ $ $

$

$

$

$
$

$

$

$

$

$

$

$

$

$

$

$

$
$ $

$
$
$$

$

$

$

$

$

$

$

$

$ Sample Arch Cog &
Initial Budget AllocSample 4 Step Cogs

Sample 2 Weight Cogs
under Each Step Cog

Evaluate Workflow with Chosen
Cogs and Find Best among Them
1st & 3rd Step’s Results Better,

Sample 4 More Under Them
1st Step Cog Evaluated Best,
Sample 4 more Weights for ItUpdate Best ResultsSample More Arch Cog
and Perform Search Similarly

Confidential GenseeAI Inc. 15

Extract
Keyword

Column

Filter

Column

Filter

Column

Filter

Table
Selection

Column
Selection

Generate
SQL

Refine

SQL

…

Text

SQL

A real gen-AI workflow: text-to-SQL

A single LLM call

Confidential GenseeAI Inc. 16

Extract
Keyword

Column

Filter

Column

Filter

Column

Filter

Table
Aggregator

Column
Selection

Check
Compliance

…

Text

SQL

+ Planning prompt

+ CoT prompt

Llama-8B

GPT-4o-mini

Table
Sampler

Table
Sampler

Table
Sampler

+ few-shot example
Llama-8B

GPT-4o-mini

Llama-8B

+ few-shot

+ Planning prompt
GPT-4o-mini

+ CoT prompt
+ few-shot
Llama-8B

gen sql

Sampler

gen sql
Sampler

gen sql
Sampler

+ few-shot
Llama-8B

GPT-4o-mini

+ CoT prompt

+ few-shot
+ Planning

GPT-4o-mini

+ CoT prompt
+ few-shot

SQL

Aggregator

Analyze
Error

+ few-shot
GPT-4o-mini

Generate
SQL

+ CoT prompt
GPT-4o-mini

+ few-shot
GPT-4o-mini

+ few-shot
Llama-8B

Gensee’s optimized text-to-SQL (training+AutoML)

Confidential GenseeAI Inc. 17

Extract
Keyword

Table
Aggregator

Column
Selection

Text

SQL

+ Planning prompt
Llama-8B

Table
Sampler

Table
Sampler

Table
Sampler

+ few-shot example
Llama-8B

GPT-4o-mini
+ few-shot

+ Planning prompt
GPT-4o-mini

+ CoT prompt
+ few-shot
Llama-8B

gen sql

Sampler

gen sql
Sampler

gen sql
Sampler

+ few-shot
Llama-8B

GPT-4o-mini

+ CoT prompt

+ few-shot
+ Planning

GPT-4o-mini

+ CoT prompt
+ few-shot

SQL

Aggregator

+ few-shot
GPT-4o-mini

Generate
SQL

+ few-shot

GPT-4o-mini

Another Gensee’s optimized text-to-SQL (latency-oriented)

Confidential GenseeAI Inc. 18

Extract
Keyword

Table
Aggregator

Column
Selection

+ Planning prompt
Llama-8B

Table
Sampler

Table
Sampler

Table
Sampler

+ few-shot example
Llama-8B

GPT-4o-mini
+ few-shot

+ Planning prompt
GPT-4o-mini

+ CoT prompt
+ few-shot
Llama-8B

gensql

Sampler

gen sql
Sampler

gensql
Sampler

+ few-shot
Llama-8B

GPT-4o-mini

+ CoT prompt

+ few-shot
+ Planning

GPT-4o-mini

+ CoT prompt
+ few-shot

SQL

Aggregator

+ few-shot
GPT-4o-mini

Generate
SQL

+ few-shot

GPT-4o-mini

Gensee’s online per-request optimization (serving)

Text 1

Text 2 Extract
Keyword

Table
Aggregator

Column
Selection

+ Planning prompt
Llama-8B

Table
Sampler

+ Planning prompt
GPT-4o-mini

+ CoT prompt
+ few-shot
Llama-8B

gensql
Sampler

+ few-shot
GPT-4o-mini

SQL

Aggregator

+ few-shot
GPT-4o-mini

Refine SQL

+ few-shot

GPT-4o-mini

Generate
SQL

+ few-shot

GPT-4o-mini

G
en

se
e

O
nl

in
e

W
or

kfl
ow

 O
pt

im
ize

r

Cognify Results
Six workloads: RAG-based QA, text-to-SQL, data visualization, financial analysis, code generation, BigBench

Up to 2.8x quality improvement

Up to 2.7x latency reduction

Up to 10x cost saving

Multiple choices on Pareto frontier

Low optimization costs: $1.5-$10, 8-42min

(roughly half of DSPy)

Cognify Takeaways

• Production-grade agents require manual input to incorporate business logic

• But manual efforts for tuning production agents can be avoided

• Cognify is the first production-ready autotuning tool for AI agents

• Please join our discord and star our repo to learn more!

• https://github.com/GenseeAI/cognify 
https://discord.gg/8TSFeZA3V6

•

20

https://github.com/GenseeAI/cognify
https://discord.gg/8TSFeZA3V6

Today’s Talk

21

Cognify [arxiv’25]: AI agent optimizer

Preble [ICLR’25]: long & shared prompt serving

InferCept [ICML’24]: compound LLM serving

It’s all about prompting
- Agent prompts are more than just a simple question

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41

Request

QueuePrompts

Prompt Tree Cache

Tool QA Virtual Env Program Gen VideoQA Document QA

System: You are an AutoGPT, you have access to the following tools. Tool 1: financial statement…User: …?
System: You are an AutoGPT, you have access to the following tools. Tool 1: financial. Tool 2: …
System: You are an AutoGPT, you have access to the following tools. Tool 3: … Parameters…

System: You are an Auto
GPT, you have access to

the following tools

Tool 1:
Financial

Statement

User: Tool 2

…

Tool 3:
YouTube

api

User: User:

User: User:

You are in the middle of a room with kitchen items. Your task is to ….

You are in the middle
of a room with kitchen
items. Your task is to

Call LLM

Go to Stove 1Gen
Action

Act in VE

On Stove 1, see a
pan 2

VE
Feed
back

Call LLM
Pick up pan 2,
from stove 1

You are a computer science programmer. Here are some example problem sols …

You are a computer
science

programmer. Here
are some example

problem sols …

User
Program 1

2nd
Parallel
Code
Gen

Tokenized Video on a
busy street in New

York

Tokenized Video … What happened to the baby? 0. Walking 1. Running

Answer: 0.
Walking

Answer 1:
Exercise

Please answer the question based on the long document below …

Please answer the
question based on

long document below

How many
dinosaurs
are there?

1st
Parallel
Code
Gen

User
Program 2

What
happened

to the baby?

0. Walking

1. Running

…

Why did
the woman
go down?

0. To jump

…

Law
Document

Preamble

What is
Maximum

size of
sidewalk?

Doc 0

When is
this bill
active?

Doc 1

Historic
Document

System: You are an Auto
GPT, you have access to

the following tools

Tool 1:
Financial

Statement

Tool 2

…

Tool 3:
YouTube

api

You are in the middle
of a room with kitchen
items. Your task is to

Go to Stove 1

On Stove 1, see a
pan 2

Pick up pan 2,
from stove 1

You are a computer
science

programmer. Here
are some example

problem sols …

User
Program 1

User
Program 2

Tokenized Video on a
busy street in New

York

Please answer the
question based on

long document below

Law
Document

Preamble

Doc 0 Doc 1

Historic
Document

Incoming Requests

GPU 0

Llama Model

GPU 1

Llama Model

GPU 2

Llama Model

GPU 3

Llama Model

Processing Queue Processing Queue Processing Queue Processing Queue

Req A1
Req A2
Req B1
Req D1

Req D2
Req C1
Req C2
Req B2

Req E1
Req B3
Req A3
Req C3

Prompt Agnostic Serving

Round Robin
Scheduler

recompute recompute recompute recompute

All Requests are recomputed

Incoming Requests

GPU 0

Llama Model

GPU 1

Llama Model

GPU 2

Llama Model

GPU 3

Llama Model

Processing Queue Processing Queue Processing Queue Processing Queue

Req A1
Req A2
Req B1
Req D1

Req D2
Req C1
Req C2
Req B2

Req E1
Req B3
Req A3
Req C3

Prompt Aware Scheduling

Prompt Aware
Distributed Scheduler

Faster completion due to prefix reusing

recomputerecompute recompute recomputereuse reuse reuse reuserecompute

How are real-world prompts like?
- A study of prompts from systems perspective

• Studied 5 workloads and 1 real LLM request trace

• tool use, embodied agents, program generation, video QA, and long document QA

• 2023 Azure LLM Inference Trace

• Long prompts followed by short output

• High sharing degree

• Variation in request load

Pr
om

pt
:O

ut
pu

t L
en

gt
h

Ra
tio

1

100

10000

Toolbench Agent Program Video QA Doc QA AzureConvo AzureCodeQA
80

85

90

95

100

Toolbench Agent Program Video QA Doc QA

Sh
ar

ed
 %

Preble: Distributed LLM Serving for Long and Shared Prompt
ICLR’25, open source at https://github.com/WukLab/preble

• A distributed serving system targeting long and shared prompts

• Co-designs prefix sharing and load balancing

• Centers around a new E2 distributed scheduling algorithm

• Two-level scheduler for scalability

• Optimizes avg and p99 latency (up to 14.5X and 10X improvement over SoTA)

27
“Preble: Efficient Distributed Prompt Scheduling for LLM Serving”, Vikranth Srivatsa*, Zijian He*, Reyna Abhyankar, Yiying Zhang, arxiv:2407.00023 (* equal contribution)

https://github.com/WukLab/preble

GPU 1 GPU 2 GPU 3 GPU 4

prefix1 prfx2 prefix3 p4

req req req

prefix1 uniqueuniqueprfx2prefix3 unique

shared prefix > unique => exploit on GPU3shared prefix < unique => explore lightest load GPU1shared prefix < unique => explore lightest load GPU2

E2 Scheduler

load = 0 load = 1load = 2load = 1 load = 0load = 2load = 3
recompute recompute reuse

load = 4

prefix3 uniq

shared prefix > unique => exploit on GPU3imbalanced load => autoscale prefix3 to GPU4

prefix3

prefix3 uniq

load = 1
reuse

Preble’s E2 Scheduling:

Exploration + Exploitation

Exploit and Explore Heuristic
Greedy Exploit

• Length of the prefix is proportional to compute

• Shared prefix > rest of prefix then exploit

• New Server: Shared + unique portion of prefix cost

• Existing Server: unique portion of prefix cost + eviction cost(unique # tkns)

Intuition on the computation:

The amount of recomputation saved is larger than new computation

How do you Explore?
Prefix aware exploration

Calculate a load cost for each GPU and pick the min one

Preble Architecture Tokenizer

Global Scheduler
Prefix Tree

(Global and local)

E2 Scheduler

GPU 0

Fair Waiting
Queue

Running

Tree Matching

GPU N

Fair Waiting
Queue

Running

Tree Matching

Request
Queue

Metrics Analysis
Engine

Rebalancer

Finished/
Eviction Req

Req 0
Req 1
Req 2
Req 3

Completed
Queue

Req 0
Req 1
Req 2
Req 3

Initial Results

• Mistral-7B on 2 A6000

• Mistral-7B on 4 A6000

• Llama3-70B on 8 H100

• Five workloads

• cmp SGLang, Oracle partition

• avg & p99 req latency, RPS

• 1.5X to 14.5X on avg

• 2X to 10X on p99
32

Impact in Real World
Paper released May 2024

Cheaper Prefix Sharing in
Real World Production
systems

• MoonShot AI

• Directly inspired by
Preble

• Open AI

• Heuristic based

August 2024

October 2024

October 2024

Preble Takeaways

• LLM Serving is getting more expensive using more
complex prompting

• Workloads are longer and shared

• Preble(ICLR ’25) enables cache and load to be
effectively utilized for performance

• Utilizing E2 scheduler and fair waiting queue

34

Today’s Talk

35

Cognify [arxiv’25]: AI agent optimizer

Preble [ICLR’25]: long & shared prompt serving

InferCept [ICML’24]: compound LLM serving

Prompt: Explain the attention KV cache.

Large Language Model

Tokenize prompt

501 4708 126 528 703

Sent to LLM

116

Generates one output token

116

49

49

4067

Detokenized

Each token has

406

529

state

Typical LLM Inference: A closer look

Agent Inference with Tool/Data Calling
Model Context Protocol (MCP)

37

Prompt: Who was the 2nd U.S. president?

Large Language Model

Tokenize prompt

105 8074 621 825 307

Sent to LLM

74

Generates one output token

74

8074

8074

5551

Detokenized

It was Wiki(

5551

622

“2nd

622

826

U.S.

826 305

305

President”

5552

)=>

Wikipedia API

John Adams

John Adams

105 8074

0

<EOS>

Agent Inference by Augmenting LLM Calls

How much is LLM intercepted?
- A study of six sets of real-life compound LLM workloads

• Intercepting for microseconds to minutes

• 2.5 to 28 interceptions per request

• Context 248MB to 720MB per req*

Ti
m

e
(s

),
N

um
, S

ize
 (x

10
M

B)
0

20

40

60

80

Math QA VE Chat Image TTS

Int Time Num Int Context Size

* Assuming a 70B model

How are LLM interceptions handled now?
- They are not!

• SoTA LLM serving systems treat LLM interceptions as end of requests

• Discard all KV context

• (Re)compute KVs for tokens in context when interception ends

• 37% - 40% e2e request latency spent on recomputation

• Wastes 40% GPU resources

InferCept: Adaptive LLM-Centric Workflow Inference
ICML’24, open source at https://github.com/WukLab/infercept

• Pause a request upon intercepting

• Adaptively choose strategies for dealing with KV context

• Efficient implementation of intercept strategies

• Multiple intercepting endpoints supported (tool, other model, human, …)

• 1.6x to 10x improvement over vLLM (SoTA LLM serving system)

41
“InferCept: Efficient Intercept Support for Large-Language Inferencing”, Reyna Abhyankar*, Zijian He*, Vikranth Srivatsa, Hao Zhang, Yiying Zhang, ICML’24 (* equal contribution)

https://github.com/WukLab/infercept

Three Intercepting Strategies
- when dealing with KV context

• Discard KV context and recompute upon return

• Preserve KV in GPU memory during interception

• Swap KV to CPU memory during interception

Strategy 1: Discard + Recompute

Discard
intercepted
request

GPU memory
Running
requests

Typical iteration time:
40ms

Recompute
token
states

Typical recomputation time:
200+ms

INTERCEPTION

Recompute all
context upon
return

Other running requests
waiting for 4x+ more time!

Strategy 2: Preserve

Preserve
intercepted
request

GPU memory

Waiting Queue

NOT ENOUGH MEMORYPrefill other requests

Strategy 3: Swap to CPU memory

GPU memory

CPU memory

PCIe

Wait for swap to finishContinue generation

Each strategy has different tradeoffs
• Discard + recompute KV

• Preserve KV in GPU

• Swap KV to CPU memory

Which is the best strategy for a given request?
How do we determine this?

Recomputing cost + stalls running requests

Memory unused during interception

Swap bandwidth limited

Minimizing Waste
A unified measurement for all strategies

Waste = unused GPU memory * time

Accounting for intercepted request and remaining request

For each intercepted request, choose the minimal-waste strategy

Can we improve the existing strategies further?

MinWaste Discard: Chunk Recomputation

Discarded
memory
reused by
other requests

GPU memory
Running
requests

Chunk 1

Chunk 2

Chunk 3

Recompute one chunk at
a time to not stall other
running requests

Recompute
token
states
(prefill)

MinWaste Swap: Hide Swap Latency

GPU memory

CPU memory

Chunk and pipeline
swapping with computation

PCIe

Swap (within a limit) is completely free!

Scheduling Across Requests

W
P

W
D

Request 1

> W
P

W
D

Request 2

< W
P

W
D

Request 3

< W
P

W
D

Request 4

><
Discard Preserve Preserve Swap

Waiting
Queue

Running
Queue

Swapped
Queue

Out of all intercepted requests in an iteration
• Use the swap budget for otherwise most wasteful requests
• Choose the smaller waste of preserve and discard for the remaining requests

• 6B GPT-J and 13B Vicuna calling six different tools

• Sustains 1.6x to 2x higher request load and 1.3x to 12x lower latency

Results

51

InferCept Takeaways

• Model calls are increasingly accompanied by external tool and data calling

• KVs need to be properly managed when external entities intercept model calls

• Three basic strategies, each with pros and cons

• InferCept: first work to manage model/non-model interactions at the system
level

52

Conclusion

• 2025 is the year of AI agents

• Many efforts in agent development and development frameworks and tools

• AI agent infrastructure is largely an unexplored area

• WukLab and GenseeAI are building a cross-stack AI agent platform

• Stay tuned and follow gensee.ai and mlsys.wuklab.io

53

GenseeAI

http://mlsys.wuklab.io

