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The Status of Al Agent

Easy to demo, extremely hard to productionize
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The Status of Al Agent

Rising inference cost, esp. as agent involves more model calls
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Today’s Al agent development and deployment life cycle
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Today’s Talk

Preble [ICLR’25]: long & shared prompt serving

InferCept [ICML24]: compound LLM serving



Cognify: Multi-Facet Al Agent Optimization

Under submission, open source at https://github.com/GenseeAl/cognify

* Al Engineers spend a lot of effort tuning Al agents and workflows
* Cognify: aims to autotune Al agents and workflows with a small budget
e Key challenge: the search space is huge and proper searching needs $$
« A simple 4-step workflow could need $168K and weeks to search brute force
 AdaSeek: adaptive hierarchical BO-based search

e Uses $5 and 24 minutes to autotune the above workflow with 2.8x higher quality
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“Cognify: Supercharging Gen-Al Workflows With Hierarchical Autotuning”, Zijian He*, Reyna Abhyankar*, Vikranth Srivatsa, Yiying Zhang (* equal contribUtidh)



https://github.com/GenseeAI/cognify

Challenge: Large Search Space but Limited Budget

Assuming 3 LLM steps in an agent workflow

12 configurations in total, each with 3 options

Grid search requires: (3)AM12 = 531,441 runs !!!

Assume workflow

. use gpt-40: $10/1M tokens What’s the best | can get with 128 trials ?
* each execution output 10K tokens

= $53K



Our Approach: Adaptive Hierarchical Search

1. Hierarchical search with layered cog search space

2. Result-driven budget distribution
A. Search space partition

B. Search budget partition

3. Dynamic resource re-distribution
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Flattened Search Space
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Cognify: Organize tuning knobs (cogs) hierarchically

Top layer: Architecture Cogs Task Decomposition Task Ensemble
Model Selection Code Rewriting
Few-Shot Example Reasoning Prompts

Middle layer: Step Cogs

Bottom layer: “Weight” (Prompt) Cogs
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Cognify’s Solution: Adaptive Search

* Partition search budget across hierarchies according to layer complexity

* Direct search budget to more promising configurations using SH

13



Architecture Cogs

Step Cogs

Weight Cogs
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A real gen-Al workflow: text-to-SQL
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- A single LLM call

Confidential GenseeAl Inc.



Gensee’s optimized text-to-SQL (training+AutoML)

+ CoT prompt

+ few-shot
+ CoT prompt + few-shot example Llama-8B
Collumn Table - GO e Sampler
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Llama-8B GPT-40-mini Llama-8B i .. GPT-40-mini
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Keyword Filter Sampler Aggregator Selection Sampler Aggregator
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Another Gensee’s optimized text-to-SQL (latency-oriented)

+ CoT prompt

+ few-shot
+ few-shot example Llama 8B
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Gensee’s online per-request optimization (serving)

+ CoT prompt
+ few-shot
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Cognify Results

Six workloads: RAG-based QA, text-to-SQL, data visualization, financial analysis, code generation, BigBench

Up to 2.8x quality improvement
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Cognify Takeaways

* Production-grade agents require manual input to incorporate business logic
 But manual efforts for tuning production agents can be avoided
* Cognify is the first production-ready autotuning tool for Al agents

* Please join our discord and star our repo to learn more!

e https://github.com/GenseeAl/cognify
https://discord.gg/8TSFeZA3V6
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It’s all about prompting

- Agent prompts are more than just a simple question

Tool Tokenized
emonstrations videos

f Systems )
; Promet
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You are an

é pref‘t of )

...............................................................

¢

Spe,ciﬁc

Code e,xamples Lon<3
documents

] (" Request- )

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41



https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41

Prompts

:Request
‘Queue

Please answer the question based on the long document below ...
Tokenized Video ... What happened to the baby? 0. Walking 1. Running

You are a computer science programmer. Here are some example problem sols ...

You are in the middle of a room with kitchen items. Your task is to ....

System: You are an AutoGPT, you have access to the following tools. Tool 3: ... Parameters...

System: You are an AutoGPT, you have access to the following tools. Tool 1: financial. Tool 2: ...

System: You are an AutoGPT, you have access to the following tools. Tool 1: financial statement...User: ...? :

Prompt Tree Cache

System: You are an Auto
GPT, you have access to
the following tools

___________________________ — T~
Tool1: Tool 3:
Financial  YouTube
Statement api
O\ < O\

Virtual Env

You are in the middle
of a room with kitchen
items. Your task is to

|Call LLM
Gen
Action Go to Stove 1

|Act in VE
\F/Eed On Stove 1, see a
back pan 2

|Call LLM

Pick up pan 2,
from stove 1

l

Program Gen

You are a computer
science
programmer. Here
are some example
problem sols ...

:  User
: Program 1

1st  2nd

: Parallel  Parallel

~ Code  Code
Gen  Gen

. i Walking

Tokenized Video on a
busy street in New
York

............................................................................................................................................

Why did

: | happened the woman '
: i tothe baby? go down? :

. { 0.Walking 0, To jump :

: i Answer: 0. Answer1: :
~ Exercise :

Document QA

Please answer the
question based on
long document below

— \

Law Historic
Document Document
Preamble

e AN
Doc 0 Doc1 How many
/ \ / \ dinosaurs
are there?
What is When is
Maximum this bill
size of active?
sidewalk?



Prompt Agnostic Serving

Incoming Requests
Req A1| [Req D2| |Req ET
Req A2| |Req C1| |Req B3
Req B1| [Req C2| [Req A3
Req D1| |Reg B2| |Req C3

Round Robin
Scheduler

GPUO GPU 1 GPU 2 GPU 3
Llama Model Llama Model Llama Model Llama Model

Processing Queue

Processing Queue

Processing Queue

Processing Queue

recompute

recompute

recompute

All Requests are recomputed

recompute




Prompt Aware Scheduling

Incoming Requests
Req A1| [Req D2| [Req ET
Req A2| |Req C1| |Req B3
Req B1| [Req C2| [Req A3
Req D1| |Reg B2| |Req C3

Prompt Aware
Distributed Scheduler
GPUO GPU 1 GPU 2 GPU 3
Llama Model Llama Model Llama Model Llama Model

Processing Queue

Processing Queue

reqeagsite

regeagaute

Faster completion due to prefix reusing

Processing Queue

reqeogate

Processing Queue

reqeagaite




Prompt:Output Length

Ratio

How are real-world prompts like?

- A study of prompts from systems perspective

e Studied 5 workloads and 1 real LLM request trace L9 .
o Conversatl.on
* tool use, embodied agents, program generation, video QA, and long document QA 06 —— Programming
(. 0 7
e 2023 Azure LLM Inference Trace o 0.4 -
* Long prompts followed by short output 0.2 -
. . 0.0 - l .
High sharing degree 0.01 1 100 10000

Inter-Arrival Time (ms)

e Variation in request load

10000

100

Toolbench Agent Program  Video QA Doc QA AzureConvo AzureCodeQA Toolbench  Agent Program Video QA Doc QA



Preble: Distributed LLM Serving for Long and Shared Prompt
ICLR’25, open source at https://github.com/WukLab/preble

* A distributed serving system targeting long and shared prompts

» Co-designs prefix sharing and load balancing

* Centers around a new =2 distributed scheduling algorithm
» [wo-level scheduler for scalability

* Optimizes avg and p99 latency (up to 14.5X and 10X improvement over SoTA)

“Preble: Efficient Distributed Prompt Scheduling for LLM Serving”, Vikranth Srivatsa*, Zijian He*, Reyna Abhyankar, Yiying Zhang, arxiv:2407.00023 (* equal contribution)27


https://github.com/WukLab/preble

Preble’s E2 Scheduling:

Exploration + Exploitation

load = 1
recompute

GPU 1
prefix

load = 2
recompute

prefix3

uniq

jue

GPU 2
prix2

req

E2 Scheduler

sharedimaisincecuinge

load = 1
reuse

GPU 4
p4
prefix3




Exploit and Explore Heuristic
Greedy Exploit

 Length of the prefix is proportional to compute

» Shared prefix > rest of prefix then exploit

Intuition on the computation:

- New Server: Shared + unique portion of prefix cost

« Existing Server: unique portion of prefix cost + eviction cost(unique # tkns)

The amount of recomputation saved is larger than new computation



How do you Explore?

Prefix aware exploration

1. Total Request Load 2. Load to be evicted 3. Cost to run request
in Window(H) To run request

GPU

o] B0
teh \ QDo

Calculate a load cost for each GPU and pick the min one



Preble Architecture

GPU 0O

Tree Matching

Running

Fair Waiting

Queue

Completed
Queue

Req

Req

Req

Req

Request
Tokenizer Queue
Global Scheduler
Prefix Tree
(Global and local)
] - Rebalancer
Metrics Analysis
Engine ™~
l Finished/ |
Eviction Req|
E2 Scheduler VICHON Req
GPU N
Tree Matching
Running Fair Waiting
Queue




Initial Results

* Mistral-7B on 2 AG0O00

* Mistral-7B on 4 AGO0O

* L lama3-70B on 8 H100

* Five workloads

« cmp SGLang, Oracle partition
e avg & p99 req latency, RPS

e 1.5X 10 14.5X on avg

e 2X 1o 10X on p99

Mistral 7B
2xA6000 Avg (s)

Mistral 7B
2xA6000 p99 (s)

Mistral 7B
4xA6000 Avg (s)

Llama3 70B Mistral 7B
4xA6000 p99 (s)

8xH100 Avg (s)

Llama3 70B
8xH100 p99 (s)
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Impact in Real World
Paper released May 2024

MoonShot Al

Cheaper Prefix Sharing in
Real World Production

systems . L
 Directly inspired by
Preble
avmrore - August 2024
@ openAl Open Al
@ OpenAl  October 2024 . Heuristic based

October 2024




Preble Takeaways

* LLM Serving is getting more expensive using more
complex prompting

* Workloads are longer and shared

* Preble(ICLR ’'25) enables cache and load to be
effectively utilized for performance

e Utilizing E2 scheduler and fair waiting queue
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Typical LLM Inference: A closer look

Prompt: Explain the attention KV cache.

I Tokenize prompt

501 | 4708 | 126 | 528 | 703 | 116 49 406

‘ Sent to LLM | | |

Large Language Model

Generates one output token I I I ‘

116 49 | 4067 | 529

Detokenized I

Each token has state



Agent Inference with Tool/Data Calling
Model Context Protocol (MCP)

Model

Context
Protocol @

MCP Client MCP Accounting

{é} Server 1 System
U ‘
. (% MCP Local Files

User Server 2

(Human) Al Agent @ @

(MCP Host)

Google Drive,

MCP Gmaill, etc.
Server 3



Agent Inference by Augmenting LLM Calls

Prompt: Who was the 2nd U.S. president? John Adams

I Tokenize prompt ‘

105 [ 8074 | 621 | 825 | 307 74 18074 | 5551 | 622 | 826 | 305 | 105 | 8074

‘ Sent to LLM | | | ‘ | ‘ ‘

Generates one output token I I I ‘ I I ‘ I

74 18074 | 5551 | 622 | 8206 | 305 | 5552 0

Detokenized I I

t was Wiki( “2nd  U.S. President” )=> <EOS>

Wikipedia AP| *
J

ohn Adams



How much is LLM intercepted?

- A study of six sets of real-life compound LLM workloads

* |ntercepting for microseconds to minutes

W IntTime || Num Int

2.5 t0 28 interceptions per request B Context Size

80
m
« Context 248MB to 720MB per req* 2
* 60
GPU - 7::;
N ) | o
& 40
>
Compu‘ted KV Model Weigh’ts ond =
Context other Memom/ Py 20
&
=
y 0
Math QA VE Chat Image TTS

* Assuming a 70B model



How are LLM interceptions handled now?

- They are not!

 SOTA LLM serving systems treat LLM interceptions as end of requests
» Discard all KV context
* (Re)compute KVs for tokens in context when interception ends
e 37% - 40% e2e request latency spent on recomputation

« Wastes 40% GPU resources



InferCept: Adaptive LLM-Centric Workflow Inference
ICML’24, open source at https://github.com/WukLab/infercept

 Pause a request upon intercepting
* Adaptively choose strategies for dealing with KV context
o Efficient implementation of intercept strategies

* Multiple intercepting endpoints supported (tool, other model, human, ...)

* 1.6x to 10x improvement over vLLM (SoTA LLM serving system)



https://github.com/WukLab/infercept

Three Intercepting Strategies

- when dealing with KV context

* Discard KV context and recompute upon return
* Preserve KV in GPU memory during interception

 Swap KV to CPU memory during interception



Strategy 1: Discard + Recompute

4 )
Running | Typical iteration time:
GPU memory requests | 40ms
N\ /
Beoampute all - ~
cuategptgmdn Other running requests
request waiting for 4x+ more time!
Re te
“ Typical recomputation time:
‘ 200+ms
INTERCEPTION

\_ J




Strategy 2: Preserve

GPU memory

Prefill other requests

Preserve
Intercepted
request

Waiting Queue

NOT ENOUGH MEMORY



Strategy 3: Swap to CPU memory

CPU memory

GPU memory

PCle N D

\Vaxiirfom sevgerter ditash




Each strategy has different tradeoffs

e Discard + recom pute K\/ Recomputing cost + stalls running requests
* Preserve KV in GPU Memory unused during interception

* Swap KV to CPU memory  Swap bandwidth limited

Which is the best strategy for a given request?
How do we determine this?



Minimizing Waste

A unified measurement for all strategies

Waste = unused GPU memory * time
Accounting for intercepted request and remaining request

For each Intercepted request, choose the minimal-waste strategy

Can we improve the existing strategies further?



GPU memory

-

4 )
Running
requests
Discarded - /
memory
reused by
other requests
Recompute
token I
states
(prefill)

)

MinWaste Discard: Chunk Recomputation

Recompute one chunk at
a time to not stall other
running requests



GPU memory

MinWaste Swap: Hide Swap Latency

CPU memory

m =

Chunk and pipeline
swapping with computation

Swap (within a limit) is completely free!



Scheduling Across Requests

Out of all intercepted requests in an iteration
* Use the swap budget for otherwise most wasteful requests
* Choose the smaller waste of preserve and discard for the remaining requests

g Request 1 A g Request 2 A g Request 3 A g Request 4 A
- 8- @) <
\ . )j \ . )j \ . )j )j
Discard Preserve Preserve
_ \ I _
N N4 N4
Waiting Running Swapped

Queue Queue Queue



Results

6B GPT-J and 13B Vicuna calling six different tools

e Sustains 1.6x to 2x higher request load and 1.3x to 12x lower latency
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InferCept Takeaways

 Model calls are increasingly accompanied by external tool and data calling
 KVs need to be properly managed when external entities intercept model calls
* [hree basic strategies, each with pros and cons

* InferCept: first work to manage model/non-model interactions at the system
level
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Conclusion

2025 is the year of Al agents
 Many efforts in agent development and development frameworks and tools
* Al agent infrastructure is largely an unexplored area

 WukLab and GenseeAl are building a cross-stack Al agent platform

» Stay tuned and follow gensee.ai and milsys.wuklab.io

,\,‘.‘\.0
@ GenseeAl @’UCSD


http://mlsys.wuklab.io

