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About Yiying Zhang

• Associate professor at UCSD CSE, leading the WukLab (wuklab.io)


• Founder and CEO of GenseeAI (gensee.ai), an agent infrastructure startup


• 15 years of experience in systems and infrastructure


• ~5 years in SysML, recent years focusing on LLM serving and agents


• Interested in joining GenseeAI as summer intern or founding engineer? 


• email yiying@gensee.ai
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The Status of AI Agent
Easy to demo, extremely hard to productionize
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  5x more time to productionize [AI Refinery] than to demo



The Status of AI Agent
Rising inference cost, esp. as agent involves more model calls

5
https://arcprize.org/blog/oai-o3-pub-breakthrough



Today’s AI agent development and deployment life cycle
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Today’s Talk

Cognify [arxiv’25]: AI agent optimizer


Preble [ICLR’25]: long & shared prompt serving


InferCept [ICML’24]: compound LLM serving
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Cognify: Multi-Facet AI Agent Optimization
Under submission, open source at https://github.com/GenseeAI/cognify 

• AI Engineers spend a lot of effort tuning AI agents and workflows


• Cognify: aims to autotune AI agents and workflows with a small budget


• Key challenge: the search space is huge and proper searching needs $$


• A simple 4-step workflow could need $168K and weeks to search brute force


• AdaSeek: adaptive hierarchical BO-based search


• Uses $5 and 24 minutes to autotune the above workflow with 2.8x higher quality

8“Cognify: Supercharging Gen-AI Workflows With Hierarchical Autotuning”, Zijian He*, Reyna Abhyankar*, Vikranth Srivatsa, Yiying Zhang (* equal contribution)

https://github.com/GenseeAI/cognify


Challenge: Large Search Space but Limited Budget
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Assuming 3 LLM steps in an agent workflow


12 configurations in total, each with 3 options


Grid search requires: (3)^12 = 531,441 runs !!!


Assume workflow 


• use gpt-4o: $10/1M tokens 


• each execution output 10K tokens


➡ $53K

What’s the best I can get with 128 trials ?



Our Approach: Adaptive Hierarchical Search

1. Hierarchical search with layered cog search space


2. Result-driven budget distribution


A. Search space partition


B. Search budget partition


3. Dynamic resource re-distribution
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Cognify’s Solution: Hierarchical Search
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High Dimension  

Flattened Search Space Low Dimension 

Low Dimension 

Low Dimension 



Cognify: Organize tuning knobs (cogs) hierarchically
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Few-Shot Example Reasoning Prompts

Task Decomposition

Code Rewriting Model Selection

Top layer: Architecture Cogs Task Ensemble

Middle layer: Step Cogs

Bottom layer: “Weight” (Prompt) Cogs



Cognify’s Solution: Adaptive Search

• Partition search budget across hierarchies according to layer complexity


• Direct search budget to more promising configurations using SH
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Cognify Results
Six workloads: RAG-based QA, text-to-SQL, data visualization, financial analysis, code generation, BigBench


Up to 2.8x quality improvement


Up to 2.7x latency reduction 


Up to 10x cost saving 


Multiple choices on Pareto frontier


Low optimization costs: $1.5-$10, 8-42min 

(roughly half of DSPy)



Cognify Takeaways

• Production-grade agents require manual input to incorporate business logic


• But manual efforts for tuning production agents can be avoided


• Cognify is the first production-ready autotuning tool for AI agents


• Please join our discord and star our repo to learn more!


• https://github.com/GenseeAI/cognify 
https://discord.gg/8TSFeZA3V6


•
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https://github.com/GenseeAI/cognify
https://discord.gg/8TSFeZA3V6


Today’s Talk
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Cognify [arxiv’25]: AI agent optimizer


Preble [ICLR’25]: long & shared prompt serving


InferCept [ICML’24]: compound LLM serving



It’s all about prompting
- Agent prompts are more than just a simple question

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41

https://towardsdatascience.com/how-i-won-singapores-gpt-4-prompt-engineering-competition-34c195a93d41
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Incoming Requests
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Incoming Requests
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How are real-world prompts like?
- A study of prompts from systems perspective

• Studied 5 workloads and 1 real LLM request trace


• tool use, embodied agents, program generation, video QA, and long document QA


• 2023 Azure LLM Inference Trace


• Long prompts followed by short output


• High sharing degree


• Variation in request load
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Preble: Distributed LLM Serving for Long and Shared Prompt
ICLR’25, open source at https://github.com/WukLab/preble 

• A distributed serving system targeting long and shared prompts


• Co-designs prefix sharing and load balancing


• Centers around a new E2 distributed scheduling algorithm


• Two-level scheduler for scalability


• Optimizes avg and p99 latency (up to 14.5X and 10X improvement over SoTA)

27
“Preble: Efficient Distributed Prompt Scheduling for LLM Serving”, Vikranth Srivatsa*, Zijian He*, Reyna Abhyankar, Yiying Zhang, arxiv:2407.00023 (* equal contribution)

https://github.com/WukLab/preble
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Exploit and Explore Heuristic
Greedy Exploit

• Length of the prefix is proportional to compute


• Shared prefix > rest of prefix then exploit

• New Server:       Shared + unique portion of prefix cost


• Existing Server:                   unique portion of prefix cost + eviction cost(unique # tkns)

Intuition on the computation:

The amount of recomputation saved is larger than new computation



How do you Explore?
Prefix aware exploration

Calculate a load cost for each GPU and pick the min one



Preble Architecture Tokenizer
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Initial Results

• Mistral-7B on 2 A6000


• Mistral-7B on 4 A6000


• Llama3-70B on 8 H100


• Five workloads


• cmp SGLang, Oracle partition


• avg & p99 req latency, RPS


• 1.5X to 14.5X on avg


• 2X to 10X on p99
32



Impact in Real World
Paper released May 2024

Cheaper Prefix Sharing in 
Real World Production 
systems

• MoonShot AI


• Directly inspired by 
Preble


• Open AI


• Heuristic based

August 2024

October 2024

October 2024



Preble Takeaways

• LLM Serving is getting more expensive using more 
complex prompting


• Workloads are longer and shared 

• Preble(ICLR ’25) enables cache and load to be 
effectively utilized for performance  

• Utilizing E2 scheduler and fair waiting queue
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Today’s Talk
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Prompt: Explain the attention KV cache.

Large Language Model

Tokenize prompt

501 4708 126 528 703

Sent to LLM

116

Generates one output token

116

49

49

4067

Detokenized

Each token has

406

529

state

Typical LLM Inference: A closer look



Agent Inference with Tool/Data Calling
Model Context Protocol (MCP)
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Prompt: Who was the 2nd U.S. president?

Large Language Model

Tokenize prompt

105 8074 621 825 307

Sent to LLM

74

Generates one output token

74

8074

8074

5551

Detokenized

It was Wiki(
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622

826

U.S.

826 305

305

President”

5552

)=>

Wikipedia API

John Adams

John Adams

105 8074

0

<EOS>

Agent Inference by Augmenting LLM Calls



How much is LLM intercepted?
- A study of six sets of real-life compound LLM workloads

• Intercepting for microseconds to minutes


• 2.5 to 28 interceptions per request


• Context 248MB to 720MB per req*
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How are LLM interceptions handled now?
- They are not!

• SoTA LLM serving systems treat LLM interceptions as end of requests


• Discard all KV context


• (Re)compute KVs for tokens in context when interception ends


• 37% - 40% e2e request latency spent on recomputation


• Wastes 40% GPU resources



InferCept: Adaptive LLM-Centric Workflow Inference
ICML’24, open source at https://github.com/WukLab/infercept 

• Pause a request upon intercepting


• Adaptively choose strategies for dealing with KV context


• Efficient implementation of intercept strategies


• Multiple intercepting endpoints supported (tool, other model, human, …)


• 1.6x to 10x improvement over vLLM (SoTA LLM serving system)

41
“InferCept: Efficient Intercept Support for Large-Language Inferencing”, Reyna Abhyankar*, Zijian He*, Vikranth Srivatsa, Hao Zhang, Yiying Zhang, ICML’24 (* equal contribution)

https://github.com/WukLab/infercept


Three Intercepting Strategies
- when dealing with KV context

• Discard KV context and recompute upon return


• Preserve KV in GPU memory during interception 


• Swap KV to CPU memory during interception



Strategy 1: Discard + Recompute

Discard 
intercepted 
request

GPU memory
Running 
requests

Typical iteration time: 
40ms

Recompute 
token 
states

Typical recomputation time: 
200+ms

INTERCEPTION

Recompute all 
context upon 
return

Other running requests 
waiting for 4x+ more time!



Strategy 2: Preserve

Preserve 
intercepted 
request

GPU memory

Waiting Queue

NOT ENOUGH MEMORYPrefill other requests



Strategy 3: Swap to CPU memory

GPU memory

CPU memory

PCIe

Wait for swap to finishContinue generation



Each strategy has different tradeoffs
• Discard + recompute KV 


• Preserve KV in GPU


• Swap KV to CPU memory

Which is the best strategy for a given request? 
How do we determine this?

Recomputing cost + stalls running requests

Memory unused during interception

Swap bandwidth limited



Minimizing Waste
A unified measurement for all strategies


Waste = unused GPU memory * time

Accounting for intercepted request and remaining request


For each intercepted request, choose the minimal-waste strategy


Can we improve the existing strategies further?



MinWaste Discard: Chunk Recomputation

Discarded 
memory 
reused by 
other requests

GPU memory
Running 
requests

Chunk 1

Chunk 2

Chunk 3

Recompute one chunk at 
a time to not stall other 
running requests 

Recompute 
token 
states 
(prefill)



MinWaste Swap: Hide Swap Latency

GPU memory

CPU memory

Chunk and pipeline 
swapping with computation

PCIe

Swap (within a limit) is completely free!



Scheduling Across Requests
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Out of all intercepted requests in an iteration
• Use the swap budget for otherwise most wasteful requests
• Choose the smaller waste of preserve and discard for the remaining requests



• 6B GPT-J and 13B Vicuna calling six different tools


• Sustains 1.6x to 2x higher request load and 1.3x to 12x lower latency

Results
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InferCept Takeaways

• Model calls are increasingly accompanied by external tool and data calling


• KVs need to be properly managed when external entities intercept model calls


• Three basic strategies, each with pros and cons


• InferCept: first work to manage model/non-model interactions at the system 
level
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Conclusion

• 2025 is the year of AI agents


• Many efforts in agent development and development frameworks and tools


• AI agent infrastructure is largely an unexplored area


• WukLab and GenseeAI are building a cross-stack AI agent platform


• Stay tuned and follow gensee.ai and mlsys.wuklab.io
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GenseeAI

http://mlsys.wuklab.io

