COAT: Compressing Optimizer states and Activation for
Memory-Efficient FP8 Training

Haocheng Xi, Han Cal, Ligeng Zhu, Yao Lu, Kurt Keutzer, Jianfel Chen, Song Han

Motivation: High Memory Usage

* Model Memory (per-parameter)
* Optimizer States: FP32 & FP32

* 8 bits per parameter
* First-order momentum & Second-order momentum

* Master Copy Weight: FP32
* 4 bits per parameter

* Gradients: FP32
* 4 bits per parameter

* Total: 16 bit per parameter

* Activations: BF16

* Proportional to Batch Size (BS) and Sequence Length (SL)
* Dominate when optimizer/gradient/parameters are sharded across GPUs

Motivation: High Memory Usage

* Train Llama-2-7B on 4 » H100, using PyTorch FSDP
* Batch Size=2, Sequence Length=2048

13.1 GB 6.5 GB 6.5 GB 25.8 GB 52.0 GB 55.1 GB
Memory Usage Per GPU

* Train Llama-2-13B on 8 * H100, using PyTorch FSDP
* Batch Size=1, Sequence Length=2048

12.6 GB 6.3 GB 6.3 GB 20.1 GB 45.3 GB 49.4 GB
Memory Usage Per GPU

Optimizer states and Activations |lead to the largest memory usage
Limit the scale-up of sequence length & model size

Solution: Quantize Optimizer states and Activations to FPS

* FP8 format — E4AM3 and E5EM?2

* TransformerEngine uses FP8 to accelerate, but not being memory-efficient
* Optimizer states: 4x memory efficient compared with FP32

* Activations: 2x memory efficient compared with BF16

FPrejo o)1 1 jof1 1001 j0l1j0]0 11 |deally, we can achieve roughly 1.75x memory
reduction ratio when optimizer states and
sras| 0 |o |1 |1 [1|1]2|of2]|1|ofo]2]o|1]o0 activations are all quantized to FP8

12.6 GB 20.1 GB 45.3 GB 1.00x
3.2 GB 10.0 GB 25.8 GB 1.75x

FPE EAM3 | 0 0 1 0 il i) 0 1

FPBESM2| 0 | O 1 1|0 1 1|0

https://github.com/NVIDIA/TransformerEngine

Part 1: Preliminaries of Optimizer States Quantization

* FP8 Quantization

) ‘Y:);‘) ax X P -, .
Xpps, Sy = Q(Xpp32), where Xppg = [“--J Sy = 2 ([Xml) - NEas _ g8 i the largest representable value

SX A h;}[:/‘](3 max
* Optimizer Step
* AdamW optimizer has first-order momentum m and second-order momentum v

e At time step t:

* Update the optimizer states my = Bimy—1 + (1 — B1)gi—1 v = Bovy_1 + (1 — B2)gi 4
L MMy Y
my = 1{_1—3.}'2

1— 4t

. m
* Update the weights Wiy = Wy — 1) (\/(— ; ; + ,\“-,) n is learning rate, 1 is weight decay
[}

Part 1: Difficulty of Optimizer States Quantization

* We apply per-group quantization
* Every G elements are quantized independently (G=128)

* We Observe that FP8's representation range i1s under-utilized

* E4AM3’s minimum value = 272, maximum value = 448 > Dynamic range = 2 X 10°
* However, most groups’ dynamic range is small

_ _ . max _value
Dynamic Range Ry is defined as ———"=

* Can not utilize this range well, therefore leads to large quantization error

In @ quantization group

105 1 FP8 Eam3 Representation Range, heavily under utilized

Expecially for second-order ® = First Order === Second Order
N . , . .
10 First order momentum’s dynam’|c range is larger
than second-order momentum’s dynamic range
100 Jqy | | I

0 20 40 60 80 100
Group Index

Part 1. Methodology Dynamic Range Expansion

* We hope to fully utilize the FP8 representation range

* Introduce an expand function to expand the dynamic range before quantization

e The functionis f(x) = sign(z)|z|*
* We do expansion before quantlzatlon: Xrps. Sx = Q(f(Xpp32))

* Dynamic range will be expanded ifk>1

max(|f(X)|) max(|sign(X)X"*]) (111 1\(|\|)> — (Ry)F
min(|f(X)|) min(|sign(\)\"|) ~ \min(|X]) =l

Ryx) =

» Optimal k should fully utilize the range, and satisfy that (Rx)* = Reus

* Can be directly calculated as &k = logg . (REam3)
* Computed on-the-flyin every optimizer.step() for every quantization group

Part 1. Result of Dynamic Range Expansion

* After Expansion, every quantization group can ¢ Second Order momentum has a larger k than
fully utilized the FP8’ representation range First Order momentum
After Expansion

0 i \\

105 | | I|||||l||l|||||||| I||||||||
100 T T T
0 20 40

Group Index

First order

0 1 2 3 4
Second order

5000 -

Second order’s k 1s larger than first-order
]

=

Part 1: Result of Dynamic Range Expansion

* Quantization error can be greatly reduced * The distribution after Dynamic Range
Expansion can better utilize FP8 EAM3’s

* The actual effective term when updating representation range

weight is To4e SO We report the quantization

error of this term

1¢6 First order ¢ oLe6 Second order
l}} 3] Before Expand Before Expand
t After Expand B After Expand
(l'{+1 = wy; — ’,, (- _+_ A“'.‘. 4- ter Expan er Expan
vV Uy + € 44
3 J¢«— FP8 Representation Range——> «— FP8 Representation Range——»

Table 1: Quantization error of % under different g

quantization settings. +Expand means applying our

Dynamic Range Expansion method. Ol 26 23 20 23 26 29 518 26 203 20 23 96 9
MSE of % Second Order
v Figure 3: Dynamic Range Expansion can

First Order E4M3 E4M3+Expand ESM2 ESM2+Expand 1 .
| P _ P better utilize E4M3 representation range.
E4M3 20.10 18.08 25.65 18.16
E4M3+Expand | 15.13 1231 21.96 12.43
ESM2 37.02 35.96 40.30 36.00
ESM2+Expand | 17.79 15.48 23.84 15.57

Part 2: Activation Memory Decomposition

* Need to save activation to calculate the gradient in backward pass
* Consumes much memory

* Non-linear layer contributes to >50% memory usage

Non-Linear Attention Reduction Ratio
RMSNorm Act Func RoPE FlashAttn Linear Total Ideal Achieved
BF16 4U 8U 2U 3U 5.66U 22.66U
Llama-style TE 4U 8U 2U 3U 3330 20330 1.11x 1.09 x
COAT |U 4U 2U 3U 3.33U [3.3300 1.69x 1.65 %

IU = Batch Size x Sequence Lengtﬁ x Hidden Size x 2 bytes (for BF16)
* Important to quantize both linear and non-linear layers’ input to save memory

Part 2: Mixed Granularity Activation Quantization

Uses FP8 precision flow to reduce activation memory

* Input and Output of every linear and non-linear layers are in FP8 precision
* The output of this layer is the input of the next layer

* Save the FP8 activation instead of BF16 to reduce activation memory usage

* Fuse quantize and dequantize operation into kernels to reduce overhead

* Propose Mixed Granularity Activation Quantization
* Vary the quantization granularity across different layers
* balance precision and efficiency

Linear layers

* Uses per-tensor quantization, since it iIs more hardware Friendly
* Also compatible with other quantization methods ©

Non-linear layers
* Uses fine-grained quantization, since it offers better precision

Part 2: Mixed Granularity Activation Quantization

* Non-linear layers

* Uses Per-group quantization, since it offers better precision
* Possible choices

Per-group quantization — quantize every 1 x G elements independently
Per-block quantization — quantize every B x B elements independently

O 4x4 quant for LayerNorm 1x16 quant for LayerNorm
4 TransformerEngine Mixed Granularity (Ours)
600
Per-group quantization is better than per-block quantization 45,
[6a]
L . . T ,
LayerNorm'’s quantization error is large if quantization is 5o Mﬂ/
performed across different token-axis)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer

(a) 4 x 4 quantization of LayerNorm’s input leads to large quantization
error. The error becomes larger in deeper layers.

Part 2: Mixed Granularity Activation Quantization

* Linear Layers

* Propose Group Scaling — Efficient just-in-time scaling for per-tensor
quantization

* Per-tensor quantization requires to first calculate the maximum value
* Needs per-tensor reduction, and just-in-time scaling will introduce overhead

* Delayed Scaling uses history to estimate the max value
* Add implementation complexity and instability

Part 2: Mixed Granularity Activation Quantization

* Split the max reduction into two stages

* (1) Perform max reduction on each 1 x G element and storing the results as intermediate
values
* Can be seamlessly fused into previous kernels, without adding too much overhead
* (2) Apply max reduction on the intermediate tensor to obtain the per-tensor max value
* The intermediate tensor is smaller than original tensor, therefore the latency is reduced

Tensor Size Dela}'ed Just-injime Group Scaling
Scaling Scaling (Ours)
1100816384 0.00 ms 137ms 5 0.10ms
The latency caused by reduction is greatly reduced 11008%8192 0.00 ms 0.89ms -5 0.08ms
4096<16384 0.00 ms 0.55ms —— 0.07ms

4096x8192 0.00 ms 032ms - 0.06ms

Experiments — Accuracy

* OLMo-7B pretraining from scratch
* Train for approximately 250B tokens
* Batch Size = 4M tokens
* Nearly lossless performance!

Training Loss Curve of OLMo-7B

Table 4: OLMo-7B pretraining performance on downstream tasks. We =~ =
report the performance after training for 250B tokens. 2:2 = OURS
Train Loss WikiText C4 Pile Avg ppl 400
BF16 2.366 12053 12.874 8596 11.174 o
COAT 2379 12.166 12988 8.684 11.279
COPA ARC(Easy) SciQ HellaSwag Avg Acc T Tesw
BF16 83.0% 65.7% 87.5% 569% 732% Figure 6: OLMo-7B train-
COAT 81.0% 61.9% 87.2% 60.6% 72.7 % '

ing loss curve.

Experiments — Accuracy

* OLMo-1B pretraining from scratch
* Train for 300B tokens
* Batch Size = 4M tokens
* Nearly lossless performance!

Training Loss Curve of OLMo-1B

Table 3: OLMo-1B pretraining performance on downstream tasks. We =~ ** —
report the performance after training for 300B tokens. 20 T OURS
Train Loss WikiText C4 Pile Avg ppl g%
BF16 2.551 15.234 15.538 10.563 10.083 30
COAT 2568 15384 15695 10.672 10.176
COPA ARC(Easy) SciQ HellaSwag Avg Acc C e
BF16 77.0% 573% 84.0% 545% 682% : ,] .
COAT 75.0% 581% 839% 543% 678% igureS: OLMo-IB train

ing loss curve.

Experiments — Accuracy

* LLM Fine-tuning
* On math corpus, using MAMmoTH dataset
* Nearly lossless performance!

Table 4: Evaluation result of fine-tuning Llama-2-7B on math
corpus. Llama—-2-7B refers to the evaluation metric before
fine-tuning. TE refers to TransformerEngine.

Mathmeticas SVAMP NumGLUE GSM8k Avg

Llama-2-7B 6.0 14.6 34.5 29.9 21.3
BF16 46.3 64.2 54.8 57.7 55.7
TE 453 66.1 535 57.7 55.6

COAT 47.8 64.4 533 56.6 555

Experiments — Accuracy

* Vision Language Model Training
* Perform Stage-3 SFT on VILA 1.5-7B
* Nearly lossless performance!
* Loss curve matches with baselines

Training Loss Curve of VILA-7B

Table 5: VILA1.5-7B Stage-3 SFT performance on down- 2.0
stream tasks. * means it has seen the training data. 1.8
1.6
Stage 3 VideoMME POPE VizWiz GQA* VQAvV2* -
BF16 42.96 86.90 61.42 64.55 81.47 8"
TE 43.19 87.64 57.61 64.53 81.34 b
COAT 44.56 8743 61.36 64.44 81.20 10| — BF16
1ji=
SEED 0.8/ —— OURS
Stage 3 TextVQA Image Video MMMU Val Average 0 500 1000 1500 2000
St
BF16 6560 7340 45.65 38.56 62.80 o
IE 64.70 73.51 43.12 35.89 61.88 ; i .
COAT 64.65 7336 43.76 37.22 62.51 Figure 7: VILAL5-7B Stage-3 SFT

loss curve.

Experiments — Efficiency

Table 6: Memory Saving and Speedup for a single Transformer Layer. Memory refers to Activation

Memory. Our method achieves better speedup than TransformerEngine and significantly reduces
the activation memory footprint by 1.65x.

Hidden Size = 2048, Batch Size = 4

Sequence Length = 2048 Sequence Length = 4096

Forward Backward Total Ratio Memory Ratio | Forward Backward Total Ratio Memory Ratio

BF16 3.36 8.47 11.83 1.00x 1457 MB 1.00x 6.88 17.24 24.12 1.00x 2914MB 1.00x

TE 2.96 5.32 8.28 1.42x 1333 MB 1.09x 5.94 11.29 1723 1.39x 2677MB 1.09x
COAT 2.88 5.16 8.04 1.47x 883 MB 1.65X% 5.89 10.82 16.71 1.44x 1766 MB 1.65X
Hidden Size = 4096, Batch Size = 4

Sequence Length = 2048 Sequence Length = 4096

Ratio | Forward Backward Total Ratio Memory Ratio

Forward Backward Total Ratio Memory

BF16 1.77 18.78 2655 1.00x 2914MB 1.00x 16.37 38.43 5480 1.00x 5828 MB 1.00x
TE 6.19 11.79 1798 1.47x 2677MB 1.09x 12.66 24.58 3724 1.47x 5355MB 1.09x
COAT 5.89 10.96 16.85 1.57x 1766 MB 1.65X 12.16 23.44 356 1.53x 3533MB 1.65X%

Experiments — Efficiency

Our method achieves 1.54x memory reduction ratio compared with BF16
Comparable or even higher speedup compared with TE
Double the maximum batch size and therefore increase speedup

Table 7: End-to-end memory reduction and speedup results. BS refers to batch size. CL refers to
context length. We report token/s per GPU for speed results. I means CL=1024.

Llama-2-7B Context Length = 2048 | Maximum Batch Size, Context Length = 2048
Optimizer Activations Total Ratio | Max BS Speed Ratio
BF16 - - OOM - - OOM -
1 GPUgg-; TE - - OOM - - OOM -
COAT 13.1GB 8.1 GB 79.3 GB v 1 5906 token/s v
BF16 - - OOM - 1 6130 token/s 1.00x
2 GPUgs-» TE - - OOM - 1 6842 token/s 1.1 1%
COAT 6.5GB 16.9 GB 52.8 GB v 4 11351 token/s 1.85X%
BF16 13.1 GB 25.8 GB N1GB 1.00x 2 7730 token/s 1.00x
4 GPUgs-> TE 13.1 GB 23.9GB 53.1GB 1.04x 2 9577 token/s 1.24 x
COAT 3.2GB 16.9 GB 356 GB 1.54X 4 11257 token/s 1.45 X
BF16 6.5 GB 25.8 GB 41.2GB 1.00x 4 8238 token/s 1.00x
8 GPUgs-> TE 6.5 GB 239GB 39.3GB 1.05x 4 11704 token/s 1.42 %
COAT 1.6 GB 16.9 GB 27.0GB 1.52x 8 11241 token/s 1.36 %

Experiments — Efficiency

* Our method enables us to double the batch size, and train
Llama-2-13B with 2 GPU, and Llama-30B with 8 GPU

Llama-2-13B Context Length = 2048 | Maximum Batch Size, Context Length = 2048
Optimizer Activations Total Ratio | Max BS Speed Ratio
BF16 - - OOM - - OOM -
2GPUL,, TE - - OOM ; - OOM -
COAT 12.6GB 10.1 GB 73.2 GB v 1 2137 token/s v
BF16 25.1GB 20.1 GB 76.1 GB 1.00x 1 2345 token/s 1.00x
4 GPUgs- TE 25.1GB 18.6 GB 745GB 1.02x 1 2851 token/s 1.21x
COAT 6.3 GB 13.2 GB 49.1GB 1.55X 2 5295 token/s 2.25 X
BF16 12.6 GB 20.1 GB 494GB 1.00x 2 3907 token/s 1.00x
8 GPUgs- TE 12.6 GB 18.6 GB 47.9GB 1.03x 2 5604 token/s 1.43x%
COAT 3.1GB 13.2 GB 325GB 1.52x 4 5650 token/s 1.44 %
Llama-30B Context Length = 2048 | Maximum Batch Size, Context Length = 2048
Optimizer Activations Total Ratio | Max BS Speed Ratio
BF16 - - OOM - - OOM -
8 GPUgs-| TE - - OOM - - OOM -
COAT 7.8 GB 242 GB 70.5 GB v 1 1363 token/s v

* Thanks!

	幻灯片 1: COAT: Compressing Optimizer states and Activation for Memory-Efficient FP8 Training
	幻灯片 2: Motivation: High Memory Usage
	幻灯片 3: Motivation: High Memory Usage
	幻灯片 4: Solution: Quantize Optimizer states and Activations to FP8
	幻灯片 5: Part 1: Preliminaries of Optimizer States Quantization
	幻灯片 6: Part 1: Difficulty of Optimizer States Quantization
	幻灯片 7: Part 1: Methodology —— Dynamic Range Expansion
	幻灯片 8: Part 1: Result of Dynamic Range Expansion
	幻灯片 9: Part 1: Result of Dynamic Range Expansion
	幻灯片 10: Part 2: Activation Memory Decomposition
	幻灯片 11: Part 2: Mixed Granularity Activation Quantization
	幻灯片 12: Part 2: Mixed Granularity Activation Quantization
	幻灯片 13: Part 2: Mixed Granularity Activation Quantization
	幻灯片 14: Part 2: Mixed Granularity Activation Quantization
	幻灯片 15: Experiments – Accuracy
	幻灯片 16: Experiments – Accuracy
	幻灯片 17: Experiments – Accuracy
	幻灯片 18: Experiments – Accuracy
	幻灯片 19: Experiments – Efficiency
	幻灯片 20: Experiments – Efficiency
	幻灯片 21: Experiments – Efficiency
	幻灯片 22

