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Motivation: High Memory Usage

• Model Memory (per-parameter)
• Optimizer States: FP32 & FP32

• 8 bits per parameter

• First-order momentum & Second-order momentum

• Master Copy Weight: FP32
• 4 bits per parameter

• Gradients: FP32
• 4 bits per parameter

• Total: 16 bit per parameter

• Activations: BF16
• Proportional to Batch Size (BS) and Sequence Length (SL)

• Dominate when optimizer/gradient/parameters are sharded across GPUs



Motivation: High Memory Usage
• Train Llama-2-7B on 4 * H100, using PyTorch FSDP

• Batch Size=2, Sequence Length=2048

• Train Llama-2-13B on 8 * H100, using PyTorch FSDP
• Batch Size=1, Sequence Length=2048

Optimizer States Weights Gradients Activations Total Peak

13.1 GB 6.5 GB 6.5 GB 25.8 GB 52.0 GB 55.1 GB

Memory Usage Per GPU

Optimizer states and Activations lead to the largest memory usage
Limit the scale-up of sequence length & model size

Optimizer States Weights Gradients Activations Total Peak

12.6 GB 6.3 GB 6.3 GB 20.1 GB 45.3 GB 49.4 GB

Memory Usage Per GPU



Solution: Quantize Optimizer states and Activations to FP8

• FP8 format – E4M3 and E5M2
• TransformerEngine uses FP8 to accelerate, but not being memory-efficient

• Optimizer states: 4x memory efficient compared with FP32

• Activations: 2x memory efficient compared with BF16

https://github.com/NVIDIA/TransformerEngine

Optimizer Activation Total Ratio

12.6 GB 20.1 GB 45.3 GB 1.00x

3.2 GB 10.0 GB 25.8 GB 1.75x

Ideally, we can achieve roughly 1.75x memory 
reduction ratio when optimizer states and 
activations are all quantized to FP8



Part 1: Preliminaries of Optimizer States Quantization

• FP8 Quantization

• Optimizer Step
• AdamW optimizer has first-order momentum 𝑚 and second-order momentum 𝑣

• At time step 𝑡:
• Update the optimizer states

• Update the weights

is the largest representable value

𝜂 is learning rate, 𝜆 is weight decay



Part 1: Difficulty of Optimizer States Quantization

• We apply per-group quantization
• Every G elements are quantized independently (G=128)

• We Observe that FP8’s representation range is under-utilized
• E4M3’s minimum value = 2−9, maximum value = 448 Dynamic range ≈ 2 × 105

• However, most groups’ dynamic range is small

• Dynamic Range is defined as 
max _𝑣𝑎𝑙𝑢𝑒

min _𝑣𝑎𝑙𝑢𝑒
in a quantization group

• Can not utilize this range well, therefore leads to large quantization error

First order momentum’s dynamic range is larger 
than second-order momentum’s dynamic range



Part 1: Methodology —— Dynamic Range Expansion

• We hope to fully utilize the FP8 representation range

• Introduce an expand function to expand the dynamic range before quantization
• The function is

• We do expansion before quantization:

• Dynamic range will be expanded if 𝑘 > 1

• Optimal k should fully utilize the range, and satisfy that
• Can be directly calculated as

• Computed on-the-fly in every optimizer.step() for every quantization group



Part 1: Result of Dynamic Range Expansion

• After Expansion, every quantization group can 
fully utilized the FP8’ representation range

• Second Order momentum has a larger k than 
First Order momentum



Part 1: Result of Dynamic Range Expansion

• Quantization error can be greatly reduced

• The actual effective term when updating 
weight is 

𝑚

𝑣+𝜀
, so we report the quantization 

error of this term

• The distribution after Dynamic Range 
Expansion can better utilize FP8 E4M3’s 
representation range



Part 2: Activation Memory Decomposition

• Need to save activation to calculate the gradient in backward pass
• Consumes much memory

• Non-linear layer contributes to >50% memory usage

• Important to quantize both linear and non-linear layers’ input to save memory



Part 2: Mixed Granularity Activation Quantization

• Uses FP8 precision flow to reduce activation memory
• Input and Output of every linear and non-linear layers are in FP8 precision

• The output of this layer is the input of the next layer

• Save the FP8 activation instead of BF16 to reduce activation memory usage
• Fuse quantize and dequantize operation into kernels to reduce overhead

• Propose Mixed Granularity Activation Quantization 
• Vary the quantization granularity across different layers
• balance precision and efficiency

• Linear layers
• Uses per-tensor quantization, since it is more hardware Friendly

• Also compatible with other quantization methods ☺

• Non-linear layers
• Uses fine-grained quantization, since it offers better precision



Part 2: Mixed Granularity Activation Quantization

• Non-linear layers
• Uses Per-group quantization, since it offers better precision

• Possible choices
• Per-group quantization – quantize every 1 x G elements independently

• Per-block quantization – quantize every B x B elements independently

Per-group quantization is better than per-block quantization

LayerNorm’s quantization error is large if quantization is 
performed across different token-axis



Part 2: Mixed Granularity Activation Quantization

• Linear Layers
• Propose Group Scaling – Efficient just-in-time scaling for per-tensor 

quantization

• Per-tensor quantization requires to first calculate the maximum value
• Needs per-tensor reduction, and just-in-time scaling will introduce overhead

• Delayed Scaling uses history to estimate the max value
• Add implementation complexity and instability



Part 2: Mixed Granularity Activation Quantization

• Split the max reduction into two stages
• (1) Perform max reduction on each 1 × G element and storing the results as intermediate 

values
• Can be seamlessly fused into previous kernels, without adding too much overhead

• (2) Apply max reduction on the intermediate tensor to obtain the per-tensor max value
• The intermediate tensor is smaller than original tensor, therefore the latency is reduced

The latency caused by reduction is greatly reduced



Experiments – Accuracy

• OLMo-7B pretraining from scratch
• Train for approximately 250B tokens
• Batch Size = 4M tokens
• Nearly lossless performance!



Experiments – Accuracy

• OLMo-1B pretraining from scratch
• Train for 300B tokens
• Batch Size = 4M tokens
• Nearly lossless performance!



Experiments – Accuracy

• LLM Fine-tuning
• On math corpus, using MAmmoTH dataset
• Nearly lossless performance!



Experiments – Accuracy

• Vision Language Model Training
• Perform Stage-3 SFT on VILA 1.5-7B
• Nearly lossless performance!
• Loss curve matches with baselines



Experiments – Efficiency



Experiments – Efficiency
Our method achieves 1.54x memory reduction ratio compared with BF16
Comparable or even higher speedup compared with TE
Double the maximum batch size and therefore increase speedup



Experiments – Efficiency

• Our method enables us to double the batch size, and train 
Llama-2-13B with 2 GPU, and Llama-30B with 8 GPU



• Thanks!
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