

LightLLM v1.0.0 介绍

主讲人: 白世豪

日期: 2025年3月8日

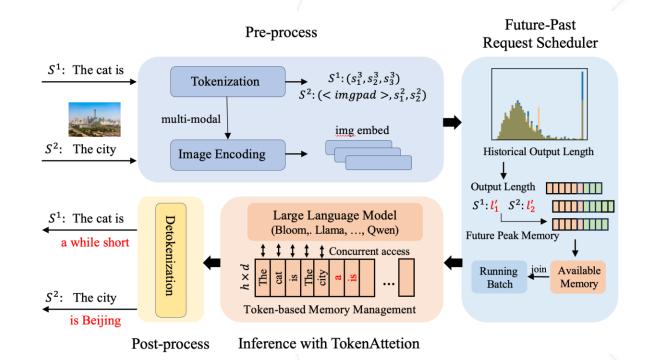
- · LightLLM新特性介绍
- · PD分离原型实现
- DeepSeek优化介绍
- DeepSeek R1/V3 部署实战

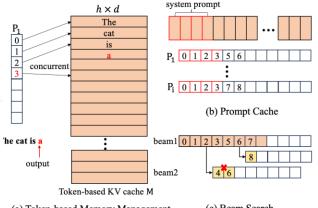
LightLLM第一版架构回顾

设计原则: 轻量、可读性好、扩展性高

两大关键特性

- 多进程架构,异步cpu-gpu处理
- 高效的调度策略,被目前流行的IIm推理框架采用

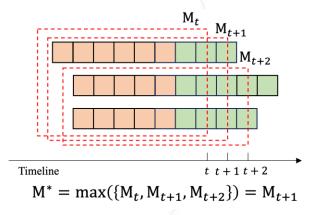




(a) Token-based Memory Management

(c) Beam Search

细粒度显存管理、 零碎片化



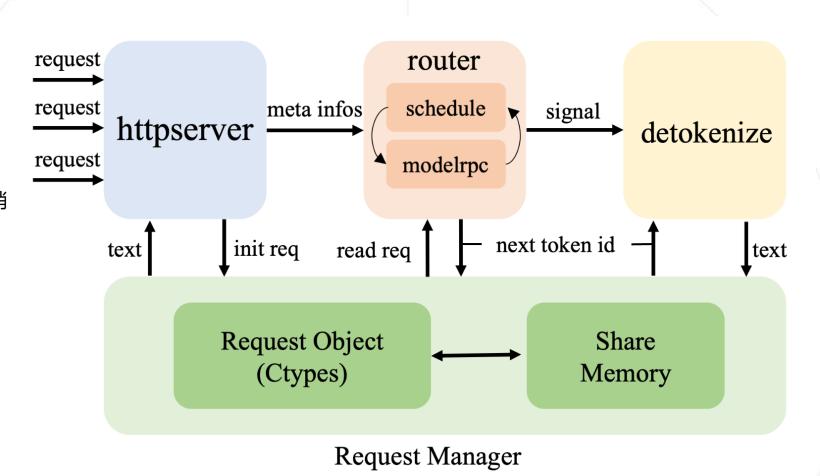
高效动态批次调度和扩缩容,最大化系统吞吐率

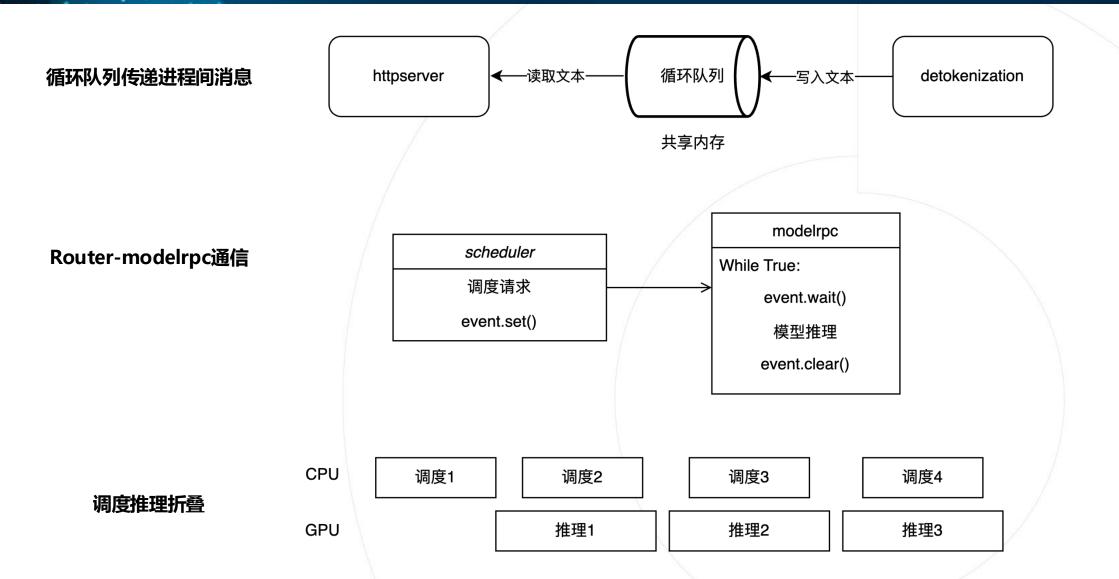
之前的问题

- 高并发时,模块间通信开销大
- · 调度与模型推理串行,影响GPU利用率

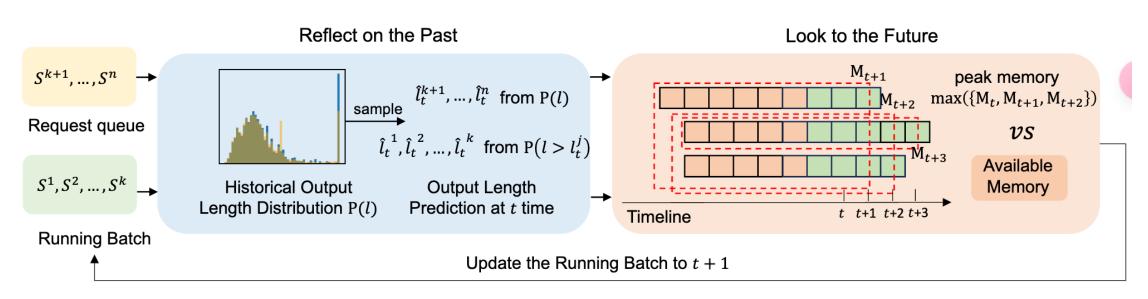
V1.0.0

- 设计可跨进程直接读取的Req对象,降低通信开销
- 调度与模型推理折叠,提高GPU 利用率
- 面向SLA的带预测的调度策略
- 推理时torch的tensor管理器
- Layer级别的混合精度部署
- PD分离部署实现
- DeepSeek 专项优化



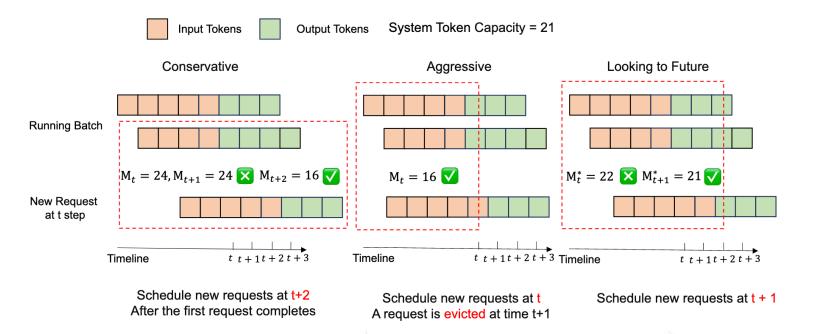


- SLA 约束保障了系统的首字延迟(TTFT),包间延迟(TPOT)以及最大回复中断 (MTPOT)
- 在给定KV cache 容量的前提下,合理的调度策略,对于SLA保障下系统吞吐十分重要
- 提出了Past-Future scheduler,包含两部分:
 - 1. 根据历史请求长度分布预测请求输出长度
 - 2. 计算Batch的峰值显存占用来决定是否调入新情求



Past-Future Request Scheduler

- 不同时刻调入新请求, Batch会造成不同的系统峰值显存占用
- Batch的最大显存使用,一定发生在请求退出时。
- 根据请求输入长度,当前输出长度和目标输出长度,计算Batch的峰值显存占用

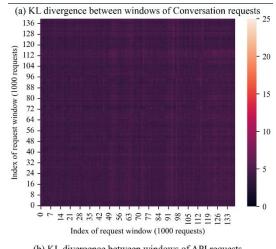


$$\{(l_p^i + l_t^i, \hat{l}_t^i - l_t^i) | S^i \in S\}$$
where $\hat{l}_t^i - l_t^i \ge \hat{l}_t^{i+1} - l_t^{i+1}, i = 1, 2, ..., k$

$$\mathbf{M}_{i} = \sum_{j=1}^{i} \{l_{p}^{j} + l_{t}^{j}\} + (\hat{l}_{t}^{i} - l_{t}^{i}) * i$$

$$\mathbf{M}^* = max(\{\mathbf{M}_i | i = 1, 2, ..., b\})$$

- 历史请求输出分布长度,在相邻的时间窗口,表现出一定的相似度
- 每个调度度,都对batch中的请求输出长度进行重新预测。结果从 $P(l>l_t^i)$ 中采样,保障请求不被逐出





Dataset	Method	Decoding Steps	Memory Utilization	Peak	Evicted Reqs	
	m . 1	000110		Memory		
Decode-heavy	Theoretical optimum	300110	94.22%	98.19%	0%	
dataset-1	Past-Future	301730	92.67%	96.56%	6.26%	
	Aggressive (water-level=99%)	289690	97.62%	102.18%	91.8%	
	Conservative	490980	57.59%	60.66%	0%	
Medium dataset-2	Theoretical optimum	692740	91.77%	97.75%	0%	
	Past-Future	694080	91.32%	96.18%	6.06%	
	Aggressive (water-level=99%)	651800	97.55%	103.06%	94.43%	
	Conservative	878260	72.38%	75.94%	0%	
Prefill-heavy dataset-3	Theoretical optimum	240270	96.11%	98.14%	0%	
	Past-Future	247400	93.38%	95.55%	3.06%	
	Aggressive (water-level=99%)	236650	97.58%	99.69%	33.66%	
	Conservative	387720	59.56%	61.49%	0%	

Table 1. Performance of different scheduling methods on multiple datasets

更丰富的量化功能支持

- 适配了多个架构的量化算子,例如vllm/torchao
- 支持加载浮点模型,在线量化
- 量化实现与模型推理部分解耦,可以高效轻松的加入各种新的量化方案
- 可通过配置文件设置layer级别的混合精度部署, 便于做各种形式的量化实验验证

```
quant_type: vllm-w8a8
mix_bits:
    - name: "down_proj"
    quant_type: "none"
    layer_nums: [1, 2, 3] # Defaults to all layers, or you can specify a layer_num list.
    - name: "o_proj"
    quant_type: "none"
    layer_nums: [1, 2, 3] # Defaults to all layers, or you can specify a layer_num list.
```

```
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 1 down_proj is set to none
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 2 q_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 2 kv_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 2 o_proj is set to none
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 2 down_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 2 down_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 3 q_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 3 kv_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 0 q_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 3 o_proj is set to none
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 3 gate_up_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 3 down_proj is set to none
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 0 kv_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 0 kv_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 0 kv_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 0 kv_proj is set to vllm-w8a8
INFO 03-07 10:12:37 [mm_weight.py:175] Layer 0 kv_proj is set to vllm-w8a8
```


Tensor管理优化

- 为了解决显存占用高且碎片化多时,torch 分配tensor 速度慢的问题,lightllm设计了一个推理时的tensor管理器,接管了torch的tensor释放
- decode时, bs小的cudagraph 和bs 大的 cudagraph共用同一块地址。

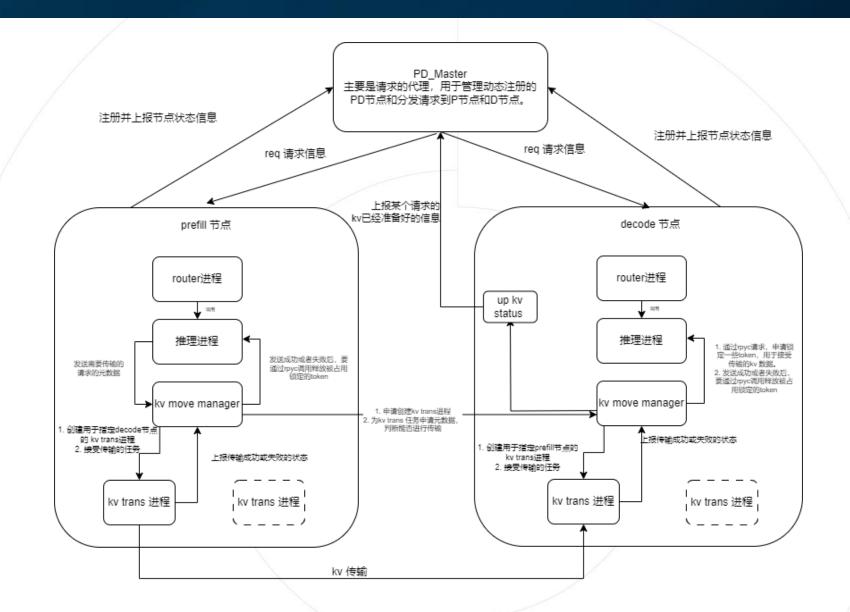
```
# 用于进行引用计数调整和判断

def custom_del(self: torch.Tensor):
    global g_cache_manager
    if hasattr(self, "storage_weak_ptr"):
        storage_weak_ptr = self.storage_weak_ptr
    else:
        storage_weak_ptr = self.untyped_storage()._weak_ref()
        UntypedStorage._free_weak_ref(storage_weak_ptr)
    if storage_weak_ptr in g_cache_manager.ptr_to_bufnode:
        g_cache_manager.changed_ptr.add(storage_weak_ptr)
    return
```

Braph memory pool tensor 起始地址・・・・ bs=1 bs=2 :

PD分离架构

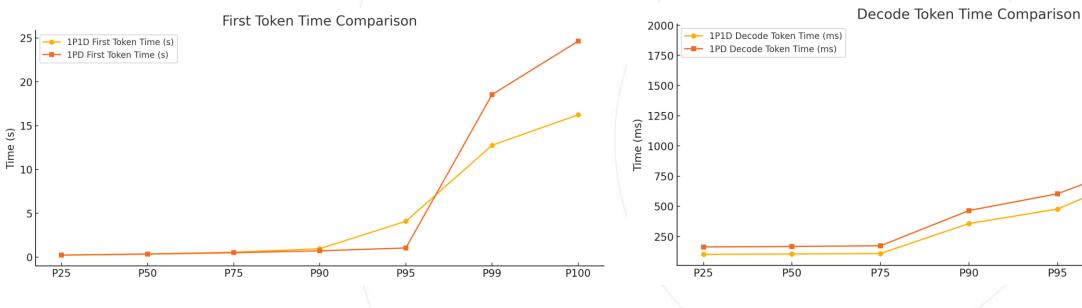
- 可动态添加和删除P节点和D节点
- P, D节点通过websocket 定期向master 汇报节点状态,便于支持各种调度和负载 均衡策略。
- P节点申请传输进程之前,查询D节点KV cache命中情况,仅传输缺失的内容减少传输开销(尤其是长文本场景)



P100

P99

- PD 分离的最大收益来自于对SLA的提升
- 下图展示了在DeepSeek-V2 236B模型 在 8xH100机器上, 1P1D (100并发), 1PD(50并发)的对比结果
- PD分离可以持续保障更低的decode延迟和首字延迟,带来更好的用户体验



DeepSeek 系列模型优化

KVCache 计算与存储策略对比

方案一:保存解压缩后的 KV Cache,使用解压缩后的 KV 进行 Attention

方案二: 计算并保存压缩的 KVCache,解压缩 KVCache进行 Attention

方案三: 计算保存并压缩 KVCache, 使用压缩 KVCache 进行 Attention, q矩阵吸收

方案四: 计算保存并压缩 KVCache, 使用压缩 KVCache 进行 Attention, q矩阵吸收, vo矩阵融合

	$\boldsymbol{q}_t^{(s)}\boldsymbol{k}_i^{(s)\top} =$	$(x_t W_q^{(s)})$	$(c_i W_k^{(s)})$	$^{\top} = \mathbf{x}_t$	$(\boldsymbol{W}_{q}^{(s)}\boldsymbol{W}_{k}^{(s)\top})$	c_i^{T}
--	--	-------------------	-------------------	--------------------------	--	-----------

bs= 1, length= 4000	方案一	方案二	方案三	方案四
PrefillMLA 计算量 (TFLOPS)	114.58	114.58	213.54	357.85
KVCache 显存占用 (GB)	18.75	0.263	0.263	0.263

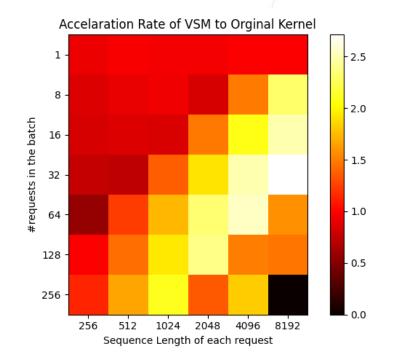
Batch Size = 1, KV = 方案二 方案四 方案一 方案三 4000 DecodeMLA 计算量 0.04 8.28 0.08 0.12 (TFLOPS) KVCache 显存占用 (GB) 18.75 0.263 0.263 0.263 Prefill: 方案二

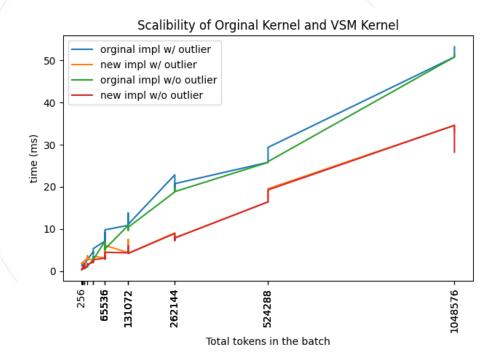
Decode: 方案三

DeepSeek 系列模型优化

MLA decode triton kernel 优化

- 根据 q head_num 和 kv head_num 的比值,将attention的 dot操作放到tensor core
- 根据设备sm数量,对bs内不同长度的请求,做负载均衡,避免cudagraph模式下长度不均衡造成的浪费。





LightLLM v1.0.0: DeepSeek-R1部署

单机部署-H200*8

LOADWORKER=8 python -m lightllm.server.api_server --model_dir ~/models/DeepSeek-R1 --tp 8 --graph_max_batch_size 100

双机部署-H100*16

Node 0

LOADWORKER=8 python -m lightllm.server.api_server --model_dir ~/models/DeepSeek-R1 --tp 16 --graph_max_batch_size 100 -nccl_host master_addr --nnodes 2 --node_rank 0

Node 1

LOADWORKER=8 python -m lightllm.server.api_server --model_dir ~/models/DeepSeek-R1 --tp 16 --graph_max_batch_size 100 -nccl_host master_addr --nnodes 2 --node_rank 1

DeepSeek-R1 单机H200*8 性能

对比框架: sglang==0.4.3, vllm==0.7.2, trtllm==0.17.0

实验设置: num_clients = 100. 输出长度: 1024, 输出长度: 均值为128的高斯分布

下一步开发计划

- 1. 开源DeepEP的接入,完成DeepSeek 跨机 DP/TP + EP的高效实现
- 2. 计算通信折叠,包括引入FLUX的MM和通信折叠,以及micro batch间的计算通信折叠等。
- 3. PD 分离高阶调度方案的设计,达到更好的负载均衡
- 4. PD分离异构方案支持,PD采用不同的部署方案(不同parallelism,不同量化方案)
- 5. . . .

github 仓库地址

技术博客地址

欢迎加入!!!

感谢聆听!