d I [u]

—=— ‘,ﬂﬁ;a

- i T TRELREZE BEABEARS
E g A _|. o OfE KRR #%J\.iiﬁ-#@mi
,g ¥ TSINGHUA UNIVERSITY

Shanghai Artificial Imelligence Laboratory

PRIME: Process Reinforcement through

Implicit Rewards

https://github.com/PRIME-RL/PRIME

Ganqgu Cui
2025.02.22

Pre-training will End?

llya Sutskever at NeurlPS 2024
 Go beyond imitation

Pre-training as we know it will end

Compute is growing:

- Better hardware
- Better algorithms
- Larger clusters

Data is not growing:

- We have but one internet
- The fossil fuel of Al

Why Reinforcement Learning

The next Scaling Law?

One thing that should be learned from the
bitter lesson Is the great power of general
purpose methods, of methods that continue to
scale with increased computation even as
the available computation becomes very great. ,
The two methods that seem to scale arbitrarily ddeas matids

In this way are|search and|learning. Richard Sutton

/ \ The Bitter Lesson

Reinforcement learning Pretraining and finetuning

Why Reinforcement Learning

Some of the Al breakthroughs in the past 10 years

‘ o 20 -

@ /LrAGO N & - 0000 s - BEE (- LeeseooL
00.08-32 \ \ ’\‘ Y 3 / -\‘ _ °® 00:00:27
eCe : »

AlphaGo AlphaStar

Current state AlphaTensor Algorithmic State update New state
instruction
e »
&
$hze < SO ¢ -,
Formalize Search N) ®<<‘/,\/ v ’ |
i | * B i ’ S » » 5
ormalizer olver
~100M ®
network network

AlphaZero . Repeat

AlphaProof AlphaTensor

Why Reinforcement Learning
Some of the Al breakthroughs in the past half year

#llldlarge-scale reinforcement learning algorithmiEEE 1 ERGEINEC C AR Gl

productively using its chain of thought in a highly data-efficient training process. We have
found that the performance of ol consistently improves with more reinforcement learning

(train-time compute) and with more time spent thinking (test-time compute). The

OpenAl ol

@' deepseck

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-Al

research@deepseek.com

DeepSeek R1

Reinforcement Learning

The agent takes actions in an to
maximize cumulative rewards

AGENT ENVIRONMENT
-State s €S

- Take action a € A

—

-Getreward T
-New state s’ € S

https://lilianweng.github.io/posts/2018-02-19-rl-overview/

Reinforcement Learning

Key faCtOrS in Scalable RL for LLMS 0o DeepSeek-R1-Zero AIME accuracy during training
* A strong base policy
* DeepSeek-V3 671B
e Unhackable, accurate rewards
1, matched 03
Tglath(y) — . —&— rl-zero-pass@1
0, otherwise - - ;1:[.2069?;-2225@@15
* Simple policy gradient works well ;

Steps

e GRPO = REINFORCE + Avg. as baseline

Guo et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. 2025

Reinforcement Learning

A missing part: Dense Rewards
* Rule-based rewards / Outcome reward models only provide final
rewards for responses

 Reward Sparsity

Sparse Reward Environment

ai

a’ °

1%

ST

V)
Hé

Reinforcement Learning

A missing part: Dense Rewards
* Rule-based rewards / Outcome reward models only provide final
rewards for responses

 Reward Sparsity -> Process Reward Model!

Sparse Reward Environment

YO
oo

Supervise Process, Not Outcome

— Andreas Stuhlmdiller et al.

Let

432!~ 4 =p(@)pa(2) - pel), ORM | PRM | Majority Voting

where each non-constant polynomial p;(x) is monic with integer coefficients, and

cannot be factored further over the integers. Compute pi(1) + p2(1) + -+ + pe(1). % SOlved (Best—Of— 1860) 724 78 2 696

This problem is about factoring a polynomial over the integers, which can be a tricky task.

One possible strategy is to look for rational roots of the polynomial, using the rational root

theorem. 78 4

However, that would involve checking a lot of possible factors of —4, and there is no guarantee

that the polynomial has any rational roots at all.

Another possible strategy is to use some algebraic tricks to simplify the polynomial or reduce 76 -

its degree.

I notice that the polynomial has only even powers of x, so I can try to substitute y = z* and =

see what happens. ué 74 4

Then the polynomial becomes y* + 3y* — 4, which is a quadratic equation in y2. -{'H

I can try to factor this quadratic equation by looking for two numbers that multiply to —4 and g 77 -

add to 3. ‘_;

Those numbers are 4 and —1, so I can write y* + 3> — 4 = (y® +4)(3* — 1). o

Now I can substitute back z* = y and get z® + 3z* — 4 = (2% + 4)(z* — 1). E 70

This looks promising, because I have reduced the degree of the factors from 8 to 4. 0

I can try to factor each of these factors further, using the difference of squares formula. % 68 4

I get 2 + 3z* — 4 = (2 + 2)(2® — 2)(2® + 1) (2% — 1). ié

I can apply the difference of squares formula again to the last factor and get z® + 3z — 4 = a

(@* +2)(z* - 2)(@* + D)(z + 1)(z - 1). X 66 1

Now I have factored the polynomial completely into monic linear and quadratic factors with

integer coefficients. .
These are the p;(z)’s that the problem is asking for. 64 - Process-Supervised RM
To find the sum of their values at = = 1, I just need to plug in = = 1 into each factor and add Outcome-Supervised RM
them up. 62 4 —— Majority Voting
Lget pi(1) +pa(1) + -+ pe(1) = (1 +2)(1* = 2)(1* + 1)(1 + 1)(1 - 1). —rT - - ——— T \ - ——————
Simplifying, T get p1(1) +pa(1) 4 - - + (1) = (3)(=1)(2)(2)(0). 10! 10?2 103
Multiplying, T get p1(1) + po(1) + - + pi(1) = 0. N = number of solutions per problem

Answer: 0

Lightman et al. Let’s Verify Step by Step

https://www.alignmentforum.org/users/stuhlmueller?from=post_header

How about PRM for RL?

No successful attempts!

3.3 Modeling Partial Completions is Not Necessary

As described in Sect. 2. PPO models each token as an action whereas REINFORCE models the
entire generation as a single action, as opposed to each token. In practice, in LLM RLHF a r(x,y) is

only attributed to the <E0S> token, where for all other tokens, only log m(ytlst)

—2 s composes R (., vy),
€ Tret(yelse) SO t(z,y)

which is not meaningful.

As the value tunction employed mn FI’'U 1s typically another model ot comparable size as
the policy model, it brings a substantial memory and computational burden. Additionally,
during RL training, the value function is treated as a baseline in the calculation of the advantage
for variance reduction. While in the LLM context, usually only the last token is assigned a
reward score by the reward model, which may complicate the training of a value function that is
accurate at each token. To address this, as shown in Figure 4, we propose Group Relative Policy

We do not apply the outcome or process neural reward model in developing DeepSeek-R1-Zero,
because we find that the neural reward model may suffer from reward hacking in the large-scale
reinforcement learning process, and retraining the reward model needs additional training
resources and it complicates the whole training pipeline.

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.14740

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.14740

How about RL?

Is RL with PRMs a dead end?

4.2. Unsuccessful Attempts

In the early stages of developing DeepSeek-R1, we also encountered failures and setbacks along
the way. We share our failure experiences here to provide insights, but this does not imply that
these approaches are incapable of developing effective reasoning models.

Process Reward Model (PRM) PRM is a reasonable method to guide the model toward better
approaches for solving reasoning tasks (Lightman et al., 2023; Uesato et al., 2022; Wang et al.,
2023). However, in practice, PRM has three main limitations that may hinder its ultimate suc-
cess. First, it is challenging to explicitly define a fine-grain step in general reasoning. Second,
determining whether the current intermediate step is correct is a challenging taskl. Automated
annotation using models may not yield satisfactory results, while manual annotation is not con-
ducive to scaling up. Third, once a model-based PRM is introduced, it inevitably leads to reward
hacking (Gao et al., 2022), and retraining the reward model needs additional training resources
and it complicates the whole training pipeline. In conclusion, while PRM demonstrates a good
ability to rerank the top-N responses generated by the model or assist in guided search (Snell
et al., 2024), its advantages are limited compared to the additional computational overhead it
introduces during large-scale reinforcement learning process in our experiments.

Guo et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. 2025

Why is it hard to use PRM in RL?

Challenge 1: How to define steps and process rewards?
e Steps does not naturally occur in sequences

* Defining the absolute correctness of intermediate processes can be ambiguous

Question
What is the 10-th term in 1,3,9,15,25,35, ... ?

Policy model could simply repeat some
Step 1: Understand pattern. ") .
Step 2: Find known numbers. correct” nonsense to get high process
Step 3: Establish formula. /

Step 4: Plug numbers into formula. rewards
Step 5: Solve.

Step 2= .
Step ready:.
Step nothing.
<EOS>

PPO w. Success Reward + PR
Return=146.42

Gao et al. ON DESIGNING EFFECTIVE RL REWARD AT TRAINING TIME FOR LLM REASONING

Why is it hard to use PRM in RL?

Challenge 2: PRM online updates are not scalable
 Static RM/PRM inevitably leads to reward hacking

 Updating PRMs online is expensive, requires 50x more rollouts

.4 RMsize RM Type £ Value Prediction
— o o | in VinePPO
19 — 25M —— Gold (Fit) fmmm e ——— — — =
— M)
. = i : Vme (@i y<t) = —+— 0.33
. s S | 1/K i R(r)
S 0.8 2
2

(o
o

o
'S

o
[N

0.0
0 20 40 60 80 100
KL distance between RL tuned policy and initial policy

Gao et al. Scaling laws for reward model overoptimization. In ICML, 2022.
Kazemnejad et al. Vineppo: Unlocking rl potential for lIm reasoning through refined credit assignment. 2024

Data Collection of PRM

Score intermediate steps one-by-one
* Expensive!

The denominator of a fraction is 7 less than 3 times the numerator. If the fraction is equivalent to 2/5, what is the numerator of
the fraction? (Answer: [14)

) (® @ Let's call the numerator x.
2 () & So the denominator is 3x-7.
) () & We know that x/(3x-7) = 2/5.
& ® @ So 5x = 2(3x-7).

D) ® @ 5x=6x-14.

Lightman et al. Let’s Verify Step by Step. 2023

Data Collection of PRM

Automatic estimation with MCTS

Also expensive!

-

Problem: Let p(x) be a monic polynomial of degree 4. Three
| of the roots of p(x)are 1, 2, and 3. Find p(0) + p(4).

|

Golden Answer: 24

(

N

‘ Solution: S = S1,82,83,"", Sk H Answer: 20 X] (a) Outcome Annotation: Vs = 0

™\

e

/’

Problem:

S1: Since three of the
roots of p(x)are 1, 2, and
3, we can write : p(x) =

n

& (x-1)(x-2)(x-3)(x-r). -

A

$21

"[53,1

$22

% 52,2

523

$23

(b): Process Annotation: y3f=

—»

SKi1

SK,,2

BrFELe

.

v

Sk3,3

2
g v

Answer: 24 /

Answer: 24/

Answer: 20 X

Vs

|\

s;: the Fth step of the solution S.

s; j- the /th step of the j-th finalized solution.

Wang et al. MATH-SHEPHERD: A LABEL-FREE STEP-BY-STEP VERIFIER FOR LLMS IN MATHEMATICAL REASONING. 2023

Implicit PRM: Core Proposition

automatically become a PRM

Proposition: Consider an ORM where the reward is parameterized by the log-likelihood ratio

of two causal LMs, i.e] 4 (y) := [log ;Tf’r((};)) Define g\, (y <1, yt) ==
ZE:l B log % . qu 1s the exponential average of T at step t.

—
—

q:b()’qa yt) = BlogEr (yly..)€” rs(¥)

Hence, qu represents an exact expectation of outcome rewardr ; at step i, i.e., the Q
value.

The proposition indicates that when modeling 74 (y) := 3 log ;‘f’i%)) to train an ORM with the

standard pipeline, where (3 is a hyperparameter, ¢ can implicitly learn a Q function. Hence,

process reward ’r‘; can be obtained by:

_ T (y: \y{:t
rl =g, — g, " = Blog —*) —>

ﬂ'ref(yt ‘y*:::t)

Yuan et al. FREE PROCESS REWARDS WITHOUT PROCESS LABELS. 2024

We only need to do reward reparameterization, the learned ORM wiill

Define outcome reward as log-
likelihood ratio

Get closed-form solution of Q-value

Get free process rewards as Q-value diff

Train as an ORM

Forward pass on
Y ORM data to obtain
implicit reward

To(¥)
Wref(Y)

. r¢(y) := Blog

Lok (16 (y) 1)

A
Train an ORM

with vanilla
ORM loss
(e.g., CE loss)

Outcome label

Inference as an Implicit PRM

Log-likelihood ratio
L N\ on partial response

represents Q value'

> (16) y<t ljt : Z))1 <‘> j?’y<l)

“rcf 1/1|Y<1)

; . =
Y, ~/ , Derive implicit process
reward from Q value:

7T¢(’!/t|}’<t)
r.ly) = Blog
y:’& (b() 71'ref(yt |y<t))

I " 1
Y — Y lYp oy

y£ can be either a single token or a step

Implicit PRM

Implicit PRM: Obtain process rewards through outcome reward modeling at no
additional cost!

- 10.6x r +2.9%
—_ - s 38.6x
3 50 o 7 < . - -
(o) A
; f’ \‘\
| -
-
]
< 40 A
&= Implicit PRM (QOurs, DPQO) “r= Math-Shepherd
4 <»= Implicit PRM (Qurs, CE) =f\= AutoPSV
e TR R T e
FLOPs

Figure 1: The x-axis indicates the FLOPs required to collect the data and train the model, and y axis
the accuracies of best-of-64 performance. The accuracy is averaged over the best-of-64 accuracies of
Mistral-7B-Instruct-v0.2 (£), Llama-3.1-8B-Instruct, and LLlama-3.1-70B-Instruct
(3) on MATH (3). Different dots on the same line indicates models
trained with the same approach but on different scales of data. The top-left zone is desirable in this
figure, as it suggests a model can achieve higher performance with less development overhead. Our
implicit PRM is much cheaper to train while presenting the best performance under the same budget.

Yuan et al. FREE PROCESS REWARDS WITHOUT PROCESS LABELS. 2024

Implicit PRM

Solution 1: Rewarding progress, Not correctness
* Implicit PRM enables tractable Q value calculation for each token at no cost

* Consider process reward as relative advantage

7T¢(yt ¥<t)
Wref(yt|y<t)

Ty ::q(t,s—qqs = flog

Solution 2: Train on outcome labels
* Implicit PRM only needs outcome labels to update

* Converts any sparse outcome reward into dense process rewards

The PRIME

Integrating Implicit PRM into RL
e Basic policy gradient (REINFORCE)

T
VoJ(0) = ExD.yromy Z Vo log mo(y: |y <t) As
=0

 Advantage estimation

T
Ap = Z’Ys_t"“(ys) —b
s=t

The PRIME

Integrating Implicit PRM into RL
 REINFORCE Leave-one-out (RLOO)

JF#
e RLOO with process rewards
Y - 1 N | 1 |
Ai:Z,},S—t. rgb(y;)—m . .7°¢ (y]) + 7, (yz) _ m . .’r‘o (y])
s=1 JFi JFi

N B -J . _J/
" N

RLOO with implicit process rewards RLOO with outcome rewards

The PRIME

Algorithm 1 Process Reinforcement through Implicit Rewards (PRIME)

Input Language model g
N.

1: Initialize policy model 7y < 7y
Tref <— 79

outcome reward verifier r,; dataset D; sample number K ; total iteration

s TOoa & To,,» implicit PRM 7, < my,,, reference model
2: for iterati](;l;l =1,...,Ndo

3 Sample batch of prompts B ~ D

4 Generate K responses: {y!, ...,y } ~ mp(+|x) for x € B

5: Compute outcome rewards: 7, (ylzK)

6 Apply accuracy filter (§3.3) on all prompts: 7 < Filter(x, y*“&,r, (y''#)) forx € B

7
8

Forward pass 74, 7rer On each (x,y) € 7 to obatin implicit process reward 74 (y:) with Eq. 3
Update Implicit PRM 7, by CE loss on (x,y, 7, (y)) € T:

Lce(@) = —Ex,y,ro(y)~T 7o (¥) - loga (rg (y)) + (1 =16 (y)) - log (1 — 0 (14 (¥)))]

9: Compute advantages A with Eq. 5
10: Update policy mg by PPO loss in Eq. 6
11: Update old parameters: 6,4 < 0
12: end for

Output Optimized policy model 7y

The PRIME

A simple, accessible, and powerful algo

Experiments

* Asimple SFT warmup to initialize (may not be necessary)

* Collect top-quality open-source data with verifiable rewards

Math: NuminaMath-CoT
Code: APPS, CodeContests, TACO, Codeforces

* Four-stage data cleansing

Filter out questions for proof/figures/tables
Classify QA/MC/fill-in-the-blank

Reformulate MC questions into QA questions
Validate solution with reasoning models

e Maj@5 with QwQ-32B

[stagel_filter.py
[stage2_format_choice.py
[stage3_merge.py

[J stage4_judge.py

Experiments

Dense rewards vs Sparse rewards
* Process rewards are 2.5x more sample efficient than outcome rewards!

* Also consistently outperform on testset

Training Rewards (10-step Moving Average) Average Test Accuracy
0 6.9% High 42
: igher
048 1 o g .| = PRIME
OV Only
@ 0.46 1 = == 28
S 2.5x Efficient
Y 044 v 36
— =]
e 042 A 34
k3
2 0401 -
0381 fy —— PRIME 20
0.36 - RLOO w/ OV Only
. : . . : 0 32 64 96 128 160 192 224 256 288 320
0 50 100 150 200 ot
eps

Steps

Figure 3: The effect of dense reward. We compare PRIME and RLOO with outcome verifier
(OV). Dense rewards in PRIME lead to 2.5 x sample efficiency and 6.9% performance improvement.
PRIME also substantially outperforms RLOO on downstream tasks.

Experiments

Dense rewards vs Sparse rewards
* Process rewards are 2.5x more sample efficient than outcome rewards!

* Also consistently outperform on testset

Table 2: Detailed results of PRIME and RLOO w/ outcome verifier (OV). At the same 240 steps, the
model trained by PRIME 1s generally better than the model trained by outcome rewards.

Method Step AIME 2024 AMC MATH-500 MinervaMath OlympiadBench LeetCode LiveCodeBench Avg,
GPT-do - 03 458 76.4 36.8 433 58.9 48.8 45.6
Llama-3.1-70B-Inst. - 20.0 37.3 635.0 37.1 30.5 35.0 344 37.0
Qwen2.5-Math-7B-Inst. - 133 50.6 79.8 346 40.7 11.7 1.3 34.6
Eurus-2-7B-SFT 0 33 30.1 66.2 32.7 208 21.7 17.8 28.8
RLOO w/ OV Only 240 20,0 47.0 73.2 364 354 28.3 26.7 369

80 20.0 41.0 68.2 38.2 37.0 26.7 26.6 36.8

160 133 42.2 72.0 37.1 38.7 26.7 256 36.5
Eurus-2-7B-PRIME 240 20,0 50.6 78.2 393 40.3 31.1 2758 41.0

320 16.7 51.8 77.8 39.7 41.5 36.1 285 41.7

592 26.7 57.8 79.2 38.6 42.1 333 28.6 439

Experiments

Online PRM update

* Online PRM is substantially better than offline PRM

0.50 4

0.48 -

Verifier Score

0.38 1

0.36 1

Training Rewards (10-step Moving Average)

0.46 4

0.44 1

0.42 4

0.40 4

—— PRIME w/ online self PRM
—— PRIME wy/ offline EurusPRM
——— PRIME w/ online EurusPRM

T T

0 50 100 150 200
Steps

(a) Training outcome rewards.

Score

40

38

36

34

32

30

Average Test Accuracy

i {
—e— PRIME w/ online SFT PRM
—@— PRIME w/ offline EurusPRM

—4— PRIME w/ online EurusPRM

32

64 96 128 160 192 224
Steps

(b) Testset accuracy.

Figure 4: Comparison of different PRMs. Online PRM initialized from SFT model achieved the
best results. Notably, using PRMs trained on extra rollouts caused performance degradation, in both
online and offline settings.

Experiments

Online PRM update

* Online update is the game changer. Offline PRM eventually got overoptimized

* SFT model initializes a good PRM

Training Rewards (10-step Moving Average)

0.50

0.48 +

0.46 1

0.44 1

0.42 1

0.40 1

Verifier Score

. PRIME w/ online self PRM

0.38 - - PRIME w/ offline EurusPRM
0.36 4 —— PRIME w/ online EurusPRM
0 50 100 150 200
Steps

(a) Training outcome rewards.

0.75 1

-

o 0.70

(0]

5

o 0.65

(W]

<

s 0.60

o

o .
0.55 - —— PRIME w/ online SFT PRM

—— PRIME w/ offline EurusPRM
0.501 —— PRIME w/ online EurusPRM
0 50 100 150 200
Steps

Figure 6: Impact of PRM online update. The
offline PRM is gradully been overoptimized while
online PRMs achieve higher accuracy throughout
training.

Experiments

PRIME can work well with other RL algorithms
* GRPO

_. i re(¥'))
Iy?| re(yl) — mean (ﬁijl))

%]
©
2
v
o
: . o |
gi = 7o) —meantry () S gue
p = ’ E ! ' . j © 0.42 -
std(ro (y7)) = std (72 S |
> ¥ @ 0.40 -
GRPO with outcome rewards o - -, g
GRPO with implicit process rewards -E 0.38 1 U’#
O 0.36 1 . i ! . ! !
o 50 100 150 200 250
°
RElNFORCE Steps
REINFORCE GRPO PPO
Iy REINFORCE w/ PRIME ~ —— GRPO w/ PRIME PPO w/ PRIME
Al = r, (v + E ~ 1
v } - : h
! N (), * Figure 10: PRIME also benefits REINFORCE,
) -3‘:3‘
REINFORCE with outcome rewards ~ -~ GRPO, and PPO, achlevmg similar mmprove-
REINFORCE with implicit process rewards ment as RLLOO.

* PPO has an extra value model

Experiments

Two different usages of Implicit PRM: Value or Reward?

* Key difference in Return!

 Process reward is better than value
(1) REINFORCE: A4; = 7,(y).

(2) On top of (1), using a linear-head value model V' to
calculate the baseline: A; = r,(y) — V(y<¢). This is the
original PPO in Figure 6 as we setv = 1and A = 1.

(3) On top of (1), using values from the Implicit PRM
to serve as the baseline: A; = r,(y) — v4(y<¢). This is
equivalent to PPO with its value model being replaced by
values from the Implicit PRM when v = 1 and A\ = 1.

(4) On top of (1), using process rewards from the Implicit
PRM to calculate the return: A; = r,(y) + Zf:t re(Ys).
This is the REINFORCE w/ PRIME in Figure 6.

o
=
oo

b
B~
o]

e
'S
B

Outcome Training Rewards
5

0.40 REINFORCE
+ linear-head value model
0.38 —— + Implicit PRM as value
—— <+ Implicit PRM as reward
0.36 1— - } r . '
0 50 100 150 200 250
Steps

Figure 11: Comparison of value models and reward
models. We show that value models, either the
original PPO one or Implicit PRM, is substaintially
worse than reward models.

Experiments

Overall comparison
 RLOO is the best performing
 PRIME is a general plug-in to almost all RL methods

Table 3: Testset results of different RL algorithms.

Method Step AIME 2024 AMC MATH-500 MinervaMath OlympiadBench LeetCode LiveCodeBench Avg.
RLOO 240 20.0 47.0 73.2 36.4 354 28.3 26.7 36.9
RLOO w/ PRIME 240 20.0 50.6 78.2 393 40.3 31.1 27.5 41.0
REINFORCE 240 6.7 47.0 72.6 36.0 37.2 27.2 25.0 36.0
REINFORCE w/ PRIME 240 6.7 50.0 76.4 36.8 39.1 27.8 27.5 37.8
GRPO 240 10.0 44.6 73.2 37.5 36.6 25.0 25.8 36.1
GRPO w/ PRIME 240 16.7 47.0 75.0 34.9 38.2 28.9 23.9 37.8
PPO 240 10.0 41.0 73.6 36.0 36.3 28.3 25.7 35.8
PRIME as Value Model 240 16.7 44.6 72.6 34.6 35.7 27.8 24.6 36.6

PPO w/ PRIME 240 13.3 50.6 77.4 37.1 40.6 30.0 26.7 394

o
o
|

©
n

Accuracy

“Zero” Experiments

DeepSeek-R1-Zero
 RLdirectly from the base model

* Surprisingly effective

DeepSeek-R1-Zero AIME accuracy during training

DeepSeek-R1-Zero average length per response during training
12000 A
10000 +
&
c
2 8000 -
wn
o
@
[= N
6000 A
c
2
()]
[=)]
©
g 4000 A
<<
—8— rl-zero-pass@1l 2000 +
—8— rl-zero-cons@16
--- 01-0912-pass@1
—-—- 01-0912-cons@64 0
) y y f ¥ 0 2000 4000 6000 8000
0 2000 4000 6000 8000 Steps

Steps

“Zero” Experiments

Zero RL from Qwen-2.5-Math-7B-Base

* Really efficient, but quickly saturate

o 0.525
°
M© 0. 4
ag} 0.500
& 0.475 g4
o <
E 0.450 7 4
E 0.425 & 0
|_ . .
o D 38
£ 0.400 <6
o 4 —&— PRIME-Zero
-'g 0.375 —— PRIME-Zero 34 PRIME
@] PRIME --- Qwen2.5-Math-7B-Instruct
0.350 1— . T T T 2
0 50 100 150 200 0 32 64 96 128 160 192 224
Steps Steps
(a) Outcome training rewards (10-step moving). (b) Math test accuracy across different gradient steps.

Figure 12: “Zero” RL from Qwen2.5-Math-7B. RL from the base model converges way faster than
the SFT model, surpassing the instruct version within 32 steps.

“Zero” Experiments

Zero RL from Qwen-2.5-32B-Base

* Larger models benefit more, and saturate slower

0.80
S
E 0.55 1 52
3
% 0.50 U 50
J

2 0.45 1 <
£ 1 48
£ W
© 0.40 [
= o 46
W o. >
2 0.35 3
S 0.30 44
*5' === Qwen2.5-32B-Instruct
O 0.25 —— PRIME-Zero 42 -8~ PRIME-Zero

0 20 40 60 80 0 16 32 48 64 80 96

Steps Steps
(a) Outcome training rewards (10-step moving). (b) Math test accuracy across different gradient steps.

Figure 13: “Zero” RL from Qwen2.5-32B-Base. RL from a 32B base model shows more promising
gain, surpassing the instruct version within 16 steps.

Experiments

Reference model choice is flexible

p | Verifier |

Ty

Implicit
PRM

Update

Implicit
PRM

Policy ref: We discard the reference policy
and use the old logprob as 7.t for PRM

Response [ourcons
Cp_J | Verifier

Update ;o
. T s
Kﬂphcn

PRM

SFT ref: We retrain the initial policy to provide 7. for
PRM and KL

Score

Training Rewards (10-step Moving Average)

0.50 A

0.48 -

0.46 -

0.44 A

0.42 A

0.40 A

0.38 A

0.36 -

0.34 A

—— policy ref
— sft ref

150

200
Steps

250

300

350

A Journey Towards Eurus-2

Eurus-2-7B-PRIME achieves 26.7% pass@1 on AIME 2024, surpassing GPT-4o0,
Llama3.1-70B, and Qwen2.5-Math-7B-Instruct.

+14.1%
go | = Eurus-2-7B-PRIME 79.24 79.8
Eurus-2-7B-SFT 76.4
Qwen-2.5-Math-7B-Instruct
70 Llama-3.1-70B-Instruct
GPT-40-2024-08-06
65.1 64.6
+27.7%
60 57.8
+16.7%
50 A 48.9
g . +12.3%
> +5.9% 2. 1 438 433
£ 40 38. s
9
<

34 635. 3 35.7
+23.4% L 32.2
30 4 30.1 30.1
20 A
16.7
13.3
10 | 9.3
3.3
0 T T T

AIME 2024 AMC Minerva Olympia dB ch MATH 500 Average

A Journey Towards Eurus-2

Eurus-2-7B-PRIME needs only 1/10 data of Qwen-Math

Eurus-2-7B-PRIME

Base Model Qwen2.5-Math-7B

SFT Data 230K (open-source)

RM Data 0

RM Eurus-2-7B-SFT

RL Data 150K queries X 4 samples

Qwen2.5-Math-7B-Instruct
Qwen2.5-Math-7B

2.5M (open-source and in-house)
618K (in-house)
Qwen2.5-Math-RM (72B)

66K queries X 32 samples

PRIME: Summary

We find a better way for RL with PRM that

Could boost model on math&coding to be
on par with larger models

Needs no imitation or distillation

With high sample-efficiency

And are accessible to every model

Y Fork 68 - Starred 1.1k

@0

John Schulman and 31 others liked your post

% Lifan Yuan
- How to unlock advanced reasoning via scalable RL?

27 Introducing PRIME (Process Reinforcement through Implicit Rewards)
and Eurus-2, trained from Base model to surpass Qwen2.5-Math-Instruct
using only 1/10 of the data.

We're still scaling up - w/ 3x more training data to go! Il

rocess Reinforcement through
mplicit Rewards

Thanks!
Q&A

Paper: https://arxiv.org/abs/2502.01456
Github: https://github.com/PRIME-RL/PRIME

Ganqu Cui
2025.02

	幻灯片 1
	幻灯片 2: Pre-training will End?
	幻灯片 3: Why Reinforcement Learning
	幻灯片 4: Why Reinforcement Learning
	幻灯片 5: Why Reinforcement Learning
	幻灯片 6: Reinforcement Learning
	幻灯片 7: Reinforcement Learning
	幻灯片 8: Reinforcement Learning
	幻灯片 9: Reinforcement Learning
	幻灯片 10: Supervise Process, Not Outcome – Andreas Stuhlmüller et al.
	幻灯片 11: How about PRM for RL?
	幻灯片 12: How about RL?
	幻灯片 13: Why is it hard to use PRM in RL?
	幻灯片 14: Why is it hard to use PRM in RL?
	幻灯片 15: Data Collection of PRM
	幻灯片 16: Data Collection of PRM
	幻灯片 17: Implicit PRM: Core Proposition
	幻灯片 18
	幻灯片 19: Implicit PRM
	幻灯片 20: Implicit PRM
	幻灯片 21: The PRIME
	幻灯片 22: The PRIME
	幻灯片 23: The PRIME
	幻灯片 24: The PRIME
	幻灯片 25: Experiments
	幻灯片 26: Experiments
	幻灯片 27: Experiments
	幻灯片 28: Experiments
	幻灯片 29: Experiments
	幻灯片 30: Experiments
	幻灯片 31: Experiments
	幻灯片 32: Experiments
	幻灯片 33: “Zero” Experiments
	幻灯片 34: “Zero” Experiments
	幻灯片 35: “Zero” Experiments
	幻灯片 36: Experiments
	幻灯片 37: A Journey Towards Eurus-2
	幻灯片 38: A Journey Towards Eurus-2
	幻灯片 39: PRIME: Summary
	幻灯片 40

