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Problem: LLM Generation with Structures
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Fig: https://arxiv.org/pdf/2304.11477

Code generation Function/tool calling Embodied Agents

Language Code JSON Schema DSL (e.g. PDDL)

Structured Outputs



Problem: LLM's Limited Ability with Complex 
Structures
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Structures are increasingly complex
● Advanced agents
● Complex tool calling
● DSLs unfamiliar to LLMs

LLM's generation ability is limited
● On-device small LMs
● Compressed models



Background: Constrained Decoding
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An example of constrained decoding with JSON Schema



Background: Constrained Decoding
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Apply a per-token mask to 

prevent generating invalid tokens

according to the structure

The overhead of the mask generator

is crucial!



XGrammar: Flexible and Efficient Structured Generation 
Engine
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XGrammar is a structured generation library that features

Flexibility: Full support for context-free grammar

Efficiency: SOTA performance in constraint decoding

                        Zero-overhead JSON Schema generation

Integration: Easy to integrate with existing LLM serving frameworks 

                           vLLM, MLC-LLM, SGLang, etc
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More Powerful: Context-free Grammar
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Prior methods mainly support regex as input grammar

XGrammar support the more powerful CFG, 

therefore supporting

● Regex

● JSON, JSON Schema

● SQL

● Python (w/ additional state maintained)



More Powerful: Pushdown Automata
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● XGrammar utilizes pushdown automata to match string to CFG

● The matching process is a recursive expansion of rules



Pushdown Automata (Cont’d)
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● It is possible that a string can 

map to multiples stacks due to 

ambiguity



XGrammar: Flexible and Efficient Structured Generation 
Engine
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Previous Mask Generation Method
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Check if each token matches, 

then generate the mask

Every token checking is very slow!

Our optimization: most token 
checking can be fast via 
preprocessing



Optimization #1. The Local Token Mask Cache
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● Most tokens can be determined ahead of 

time – context-independent tokens

● Plus a minority of tokens that need to 

check at runtime – context-dependent 

tokens

● So before running, we can compile a 

token mask cache – for each node, 

calculate accept/reject for the 

context-independent tokens

Context-dependent tokens: less than 1% for Llama-3.1 w/ JSON grammar (1134 out of 128k)



Thanks
Questions are welcome!

CMU Catalyst

● Paper: https://arxiv.org/abs/2411.15100 

● Blog: https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar 

● Code: https://github.com/mlc-ai/xgrammar 

● Documentation: https://xgrammar.mlc.ai/docs/ 

● Wechat: ubospica, Email:  yixind@andrew.cmu.edu

https://arxiv.org/abs/2411.15100
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://github.com/mlc-ai/xgrammar
https://xgrammar.mlc.ai/docs/


The Local Token Mask Cache (Cont’d)
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● At runtime, given the node we are at, retrieve the pre-computed token mask

● Then compute the context-dependent token’s validity by checking the stack



The Local Token Mask Cache (Storage)
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● For every stack top node, we store accepted/rejected/uncertain tokens.

● Accepted + Rejected + Uncertain = Vocabulary!

● We want the size of the pre-computed mask cache to be small! 

● Three storage paradigms:

a) #accept is large → [Rejected list], [Uncertain list] 

b) #reject is large → [Accepted list], [Uncertain list]

c) #accept and #reject similar → <Accepted_bitset>, <Uncertain_bitset>

● Store the one with least memory consumption!

On Llama-3.1 w/ JSON grammar, reduces total memory usage to 0.2% (from 160 MB to 0.46 MB)



The Challenge of Llama-3
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● Vocab_size: 32k → 128k

● More common tokens

● #(uncertain tokens): 100 → 1.5k

○ Means 15x check at runtime

● Further reduction of uncertain tokens is needed!



Optimization #2. Context Expansion
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● For every rule, find all its references

● Collect all possible suffix of that rule

● If an uncertain token does not fit into any of the 

suffix, it is rejected

Reduce context-dependent 

tokens by 90% on Llama-3.1 

w/ JSON grammar



Optimization #3. Persistent Execution Stack
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● Despite having most tokens pre-computed, we still need 

to compute context-dependent tokens efficiently

● As mentioned earlier, we can have multiple possible 

stacks due to the ambiguity

● We represent the stacks as a tree → avoids memory 

redundancy for storing multiple stacks

● Instead of copying the stack, we only split the branch

● Also supports rolling the state back



Optimizations #4. Optimization Passes (Inlining)
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● Inline small, fragmented rules into large rules

● Benefits:

○ Reducing recursion overhead

○ Providing more rule-local information for the local token mask cache

■ Fragmented rules lack rule-local information



Optimizations #4. Optimization Passes (Path merging)
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● Merges paths with common prefix (when safe)

● Reduces number of possible parsing stacks

○ Need to be handled one by one when generating masks

○ In the recursive cases, #(parsing stacks) may explode exponentially!



XGrammar: Flexible and Efficient Structured Generation 
Engine
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Overlapping Mask Generation and LLM Inference
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● Top: constrained decoding pipeline without overlapping

● Bottom: constrained decoding pipeline with overlapping



Integration with LLM serving frameworks
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● XGrammar is designed for easy integration and cross-platform support (with C++, Python, 

and JavaScript APIs)

○ Its core is implemented in C++, so easy to port to other platforms

● XGrammar has already been integrated with vLLM, SGLang, MLC-LLM, WebLLM



Evaluation
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Overhead of masking logits. 
(Llama-3-8B, AMD 7950X CPU, 
RTX 4090)

Up to 3.5x on JSON schema 
Up to 10x on CFG-guided

Time per output token for 
end-to-end LLM inference. 
(Llama-3-8B, AMD 7950X CPU, 
H100 GPU)

Up to 14x in JSON-schema
Up to 80x in CFG-guided



Try it out on WebLLM
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Run structured generation completely on your web browser with great efficiency!

https://huggingface.co/spaces/mlc-ai/WebLLM-Structured-Generation-Playground 

https://huggingface.co/spaces/mlc-ai/WebLLM-Structured-Generation-Playground

