Carnegie

XGrammar: Flexible And Efficient
Structured Generation Engine
for Large Language Models

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu,

Yilong Zhao, Tianqgi Chen
Dec 21, 2024

CMU Catalyst

I Problem: LN Geneeationwvith Stytictuteses

Code generation Function/tool calling Embodied Agents
GitHub .
B Copilot LangChain

Language Code JSON Schema DSL (e.g. PDDL)

N\ J
Y

Structured Outputs

N

Fig: https://arxiv.org/pdf/2304.11477

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

Problem::LLIMSd imiteéed AbilifytwithtGomplexX ex

Structures are increasingly complex
e Advanced agents
e Complextool calling
e DSLsunfamiliar to LLMs

LLM's generation ability is limited
e On-device small LMs
e Compressed models

0

\J
\!
1

ko4

[’

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

Backgrnaundi Comstrained DEcodidghg

JSON Schema Example Valid JSONs
class Task(BaseModel): { {
— "done": true, "done": false,
: "name": "Clean kitchen", "name": "Presentation",
name: str "steps™: [T, 2, 35 4] "steps™s [1; 2]
steps: List[int] } }
™ LLM Decoding ™ LLM Decoding
LLM Output LLM Output
¢ w/ mask (w/ mask
"done": "done": true = ==
D Token Mask Token Mask
true apple X 4 5 Vi X
false / task X ,\n / abcd X

An example of constrained decoding with JSON Schema

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 4 CMU Catalyst

I Backgnaundi Comstrained DEcodidghg

[LLM Inference } LStructure} [PriorJ

Output -
Output Logits P Apply a per-token mask to
(3]-2]4]5 [1.1.2]-5]-1) \ ,/ prevent generating invalid tokens
Mask i
Masked Logits [Wore J according to the structure
[3 -00 [-00
Prob. Distribution —— N The overhead of the mask generator
(1]o]o , .
Per-token Mask is crucial!
Sampled
Token
ool
i

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 5 CMU Catalyst

XGramman: Fléexiblé and EffiientStbuctured Geberationion

Engine

XGrammar is a structured generation library that features

‘ Flexibility: Full support for context-free grammar

@ Efficiency: SOTA performance in constraint decoding
o

Zero-overhead JSON Schema generation

S Integration: Easy to integrate with existing LLM serving frameworks
VvLLM, MLC-LLM, SGLang, etc

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

6

CMU Catalyst

XGramman: Rlexiblé and EffiientStiuctured Geherationion

Engine

XGrammar is a structured generation library that features

‘ Flexibility: Full support for context-free grammar

4 Efficiency: SOTA performance in constraint decoding
(2

Zero-overhead JSON Schema generation

@ Integration: Easy to integrate with existing LLM serving frameworks
VvLLM, MLC-LLM, SGLang, etc

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

7/

CMU Catalyst

I More Pawenfilli Contéxt-freeGfammarar

Context-free Grammar

root ::= <array> | <str>

array ::=
"[' (<str> | <array>
<str> | <array> ']’

ghre gg= M0 [TeTE oe

)X

-

C

Eﬁ

Prior methods mainly support regex as input grammar

XGrammar support the more powerful CFG,
therefore supporting

Regex

JSON, JSON Schema

SQL

Python (w/ additional state maintained)

\J
\!
1

ko4

[’

0

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

More Pawenfilli Pshddwn Adtomatat a

Context-free Grammar Pushdown Automata

root:
root ::= <array> | <str> H:> _)@[0] Ar-ray
[1] <str>
array ::= [31 <str7>@'\
"[' (<str> | <array> ',')* [4] <array> 5" (71 1"
<str> | <array> '] > array:
—>®7[2] ks [5] <str>—j j)
(9] [~"\] [6] <array>
Str‘ ::= T [AII\]* T Str\:
T —>@[8] w-»@[m]
Example Accepted Strings Matching Stack for Input
Stack Top
IIabc|I
Node D r--->Now at node 1 of rule <str>

[[abe”, ["def”, "ghil]] [3]<str> +--->Expanding edge [3] <str>

(["funcl®, [["func2"],"func3"]] j [@]<array> - -->Expanding edge [0] <array>

e XGrammar utilizes pushdown automata to match string to CFG
e The matching process is a recursive expansion of rules .

g

\J
\!
1

ko4

[’

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

I PushdawmAutommata{Contid)d)

4 Context-free Grammar A e |tispossible that astring can
main ::= <array> | <str> .
A A B LA, map to multiples stacks due to
<str> | <array> ']’ ambiguity
StF $i= """ [@& §]= ™
_ J

Matching Stacks for Input

G)
Expanding edge
[0]<ar‘r‘ay>----::»[()]p<amy9> 9

Expanding edge
[3]<St|"> "">[3]p<str> g g

Node | _..>Now at node 1
@ of rule <str>

Expanding edge
[@]<array>F--->[0] <array>

Expanding edge
[5]<str> ---->[5]p<str> ai=cg

Now at node 1
Node @ """ of rule <str> P>
<€

CMU Catalyst

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

XGramman: Rlexiblé and EffiientStiuctured Geherationion
Engine

XGrammar is a structured generation library that features

‘ Flexibility: Full support for context-free grammar

4 Efficiency: SOTA performance in constraint decoding
(2

Zero-overhead JSON Schema generation

@ Integration: Easy to integrate with existing LLM serving frameworks
VvLLM, MLC-LLM, SGLang, etc

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

I PrevioussMask Generation Method d

[Automata]

Next Token .
Mask Check if each token matches,
J 1 then generate the mask
Token Q

Every token checking is very slow!

Prior
LLM Output

: Our optimization: most token
ey checking can be fast via
preprocessing

Bk

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

I Optimization#11Thed dcalildkdreMbSk«€CGachehe

(91 [T\ e Most tokens can be determined ahead of
str: —>®>[8] '»@»[10] ' time - context-independent tokens
- e e Plus a minority of tokens that need to
Vocaiulary .
Adaptive 7 S check at runtime - context-dependent
Token Mask Cache (L I
tokens
text-i t . .
O &";;:;tgg;’epe"de" Ca) } Determined during e So before running, we can compile a
Contextird darit preprocessing

O (Roer}eec);eg; ependen token mask cache - for each node,

(O Context-dependent (a"b)- - - Determined at runtime

calculate accept/reject for the

context-independent tokens €U

Context-dependent tokens: less than 1% for Llama-3.1 w/ JSON grammar (1134 out of 128k)

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

Carnegie
Mellon
University

Questions are welcome!

Paper: https://arxiv.org/abs/2411.15100
Blog: https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-x

Code: https://github.com/mlc-ai/xgrammar

Documentation: https:/xgrammar.mlc.ai/docs/

Wechat: ubospica, Email: yixind@andrew.cmu.edu

CMU Catalyst

https://arxiv.org/abs/2411.15100
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://github.com/mlc-ai/xgrammar
https://xgrammar.mlc.ai/docs/

I The Local i TokemrNlaskiCaché (dGnt'd)d)

e N N
Pushdown Automata Efficient Mask Generation
0] < > e Automata X X
[0] <array>= . oplimizeion ["a Prior LLM e Overlapping
main: Output with LLM
-, B | Use pushdown SIS
[1] <str> "1 automata to parse)
[3] <str> AT | .
[e]<array>| atching Stack States
"""""""""""" [31<str> | ¢ Maintained by
persistent execution stacks
......... Node (D)
.......... I
Retrieve token mask cache
from stack top

Partial

& Token Mask
Vocabulary Context-independent: Context-dependent:
Adaptive = Fetched from cache Checked at runtime
. Preproct;ssed for . TR— . Complete
every node _ } Context-independent tokens Token Mask
e Enhanced with @ Known rejected ==
context expansion (O Context-dependent tokens (minority) Vocabulary

- AN J

e Atruntime, given the node we are at, retrieve the pre-computed token mask
e Then compute the context-dependent token’s validity by checking the stack

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

CMU Catalyst

I The LocallTokenrMaskiCaché (Storage) e)

e Forevery stack top node, we store accepted/rejected/uncertain tokens.

e Accepted + Rejected + Uncertain = Vocabulary!

e We want the size of the pre-computed mask cache to be small! Accept-heavy Cases: Store @ O

e Three storage paradigms:
Reject-heavy Cases: Store O ()

a) #acceptislarge — [Rejected list], [Uncertain list]

b) #rejectislarge — [Accepted list], [Uncertain list] Equal Cases: Very rare, store bitsets
c) #accept and #reject similar — <Accepted_bitset>, <Uncertain_bitset>

e Store the one with least memory consumption!

On Llama-3.1 w/ JSON grammar, reduces total memory usage to 0.2% (from 160 MB to 0.46 MB)

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

The ChallengecofLldmas33

e Vocab size: 32k — 128k

e More common tokens

e #(uncertain tokens): 100 — 1.5k
o Means 15x check at runtime

e Further reduction of uncertain tokens is needed!

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

Optimizatioor#22. Context Expansion

str: (9] 17\ e Foreveryrule, find all its references

»@*[8] ""9@[10] ' e Collect all possible suffix of that rule

o
_ e If anuncertain token does not fit into any of the
Before Context Expansion

(O Context-dependent (a"b
root:
[@] Array ‘
ﬂ[l] <str>m

)
Expanded Suffix Their suffices tokens by 90% on Llama-3.1
for str cannot match the (3] <str?@\
[4] carray> ' 10 W/ JSON grammar

expanded suffix
array:
9@_[2] ro

Reduce context-dependent

After Context Expansion

[5] <str>

[6] <array>
[9] [*"\]
O Context-dependent (",) str:
. Context-independent m ‘>@‘[8] [10] @
(Rejected) =
L

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

Optimizatioon#83. Persistent Execution Stack

Context-free Grammar

R e s = o e Despite having most tokens pre-computed, we still need
<str> | <array> ']’ .
strozi= Ut LA to compute context-dependent tokens efficiently

Matching Stacks for Input (["a
e As mentioned earlier, we can have multiple possible

Stacks of Stacks from
th t st i t . .
| TecTReee o Prevemee stacks due to the ambiguity
(h 4 R\ ™\

[@]<array>| [[@]<array> ‘ Node @) W ([0]<ar'r‘ay> .
| | e Werepresent the stacks as a tree — avoids memory
[3]<str> | | [5]<str> Node (@)

Node @ | | Node D redundancy for storing multiple stacks

@ e Instead of copying the stack, we only split the branch

e Also supports rolling the state back

Persistent [NOde@J [[0] ar‘r‘ay]

Execution v —
o) o
¥ R

P]

¥
[Node@)[Node@]]

11
ho3

P

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

I Optimiizations #440ppithizatioioRd8ses ¢inlinihgng)

[¢] char

str: lI {8] v ‘ [16] T I
ey
[12] "\ [13] (111 T\

e Inline small, fragmented rules into large rules

e Benefits:
o Reducing recursion overhead

o Providing more rule-local information for the local token mask cache

m Fragmented rules lack rule-local information > ¥

\J
1
ho3

[’

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

I Optimizations$#440ptimizatioivPdsses ¢PdEh nherging)ng)

factor:

oy factor:

(21 °C

e Merges paths with common prefix (when safe)
e Reduces number of possible parsing stacks
o Need to be handled one by one when generating masks

o Intherecursive cases, #(parsing stacks) may explode exponentially!

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

XGramman: Rlexiblé and EffiientStiuctured Geherationion
Engine

XGrammar is a structured generation library that features

‘ Flexibility: Full support for context-free grammar

4 Efficiency: SOTA performance in constraint decoding
(2

Zero-overhead JSON Schema generation

@ Integration: Easy to integrate with existing LLM serving frameworks
VvLLM, MLC-LLM, SGLang, etc

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

I OverlappingMaskiGeneration andhbLM inferfenceace

CPU

GPU

CPU

GPU

Grammar Mask | > Mask | >
Compilation Gen |2 Gen |2
< <
LLM Prefilling @ [Sampling | LLM Decoding @ |Sampling
Grammar Mask || > Mask P s
Compilation Gen £ Gen = .
< <
LLM Prefilling @ [Sampling LLM Decoding | & [Sampling

e Top: constrained decoding pipeline without overlapping

e Bottom: constrained decoding pipeline with overlapping

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

CMU Catalyst

I IntegnationmwithLLMSerring frameworksks

e XGrammar is designed for easy integration and cross-platform support (with C++, Python,
and JavaScript APlIs)
o Itscoreisimplemented in C++, so easy to port to other platforms

e XGrammar has already been integrated with vLLM, SGLang, MLC-LLM, WebLLM

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models CMU Catalyst

{ 2
I Evaluatiom
M llama.cpp-Grammar

JSON Schema

B Im-format-enforcer

[Outlines W XGrammar

Context-free Grammar (JSON)

4 4] 9353
_10%y 7069 6147 R 10 4711
< c
% 103 % 103
S l l
5)
= =
£ 102; £ 102;
[36 [
X

10t 10t
B llama.cpp @ VLLM (w/ Outlines) M SGLang (w/ XGrammar) M MLC-LLM (w/ XGrammar)
o SON Schema @ Context-free Grammar (JSON
ué 104 J E 104 (.l)
z = 2311
s 1432 S 1252
% 103 790 ¥ 1031 736
5 187 164 5 185
£ 107] = £ 1| e
3 =)
o o
] 11 12 12 @ 10 13 12
2 101 o 2 101; 7 6 2
(] [J]
£ E
= 1 16 32 F 1 16 32

Batch Size Batch Size

Overhead of masking logits.

(Llama-3-8B, AMD 7950X CPU,

RTX 4090)

Up to 3.5x on JSON schema
Up to 10x on CFG-guided

Time per output token for
end-to-end LLM inference.

(Llama-3-8B, AMD 7950X CPU,

H100 GPU)

Up to 14x in JSON-schema
Up to 80x in CFG-guided

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

CMU Catalyst

I Try itt auttamWébhL M1

Run structured generation completely on your web browser with great efficiency!

Model

Llama-3.1-8B-Instruct-q4f16_1-MLC v
Grammar

Custom Grammar ~

Custom EBNF Grammar

The custom grammar is described in the extended Backus-Naur form (EBNF). Below is an example
of JSON grammar in EBNF. Please follow this example when writing new grammars.

main ti= "1, " move " " move "\n" ([1-9] [0-9]? ". " move "
" move "\n")+
move ::= (pawn | nonpawn | castle) [+#]?

piece type, optional file/rank, optional capture, dest file &
rank

nonpawn ::= [NBKQR] [a-h]? [1-8]17 "x"? [a-h] [1-8]

optional file & capture, dest file & rank, optional promotion
pawn ([a-h] "x")? [a-h] [1-8] ("=" [NBKQR])?

castle "0-0" "-0"?

Prompt

r;lain t:= "1. " move " " move "\n" ([1-9] [0-9]? ". " move "
" move Il\nll)+

move t:= (pawn | nonpawn | castle) [+#]7?

piece type, optional file/rank, optional capture, dest file &
rank

nonpawn ::= [NBKQR] [a-h]? [1-8]1?7 "x"? [a-h] [1-8]

optional file & capture, dest file & rank, optional promotion

pawn 1:= ([a=h] "x")? [a-h] [1-8] ("=" [NBKQR])?
castle = "0-0" "-0"?
7z
Generate J
Output

1. e4 5 2. Nf3 Nc6 3. Bc4 Nf6 4. d3 d6 5. 0-0 0-0 6. b4 a5 7. b5 Nxb5 8. a4 Na6 9.
Qe2 Qe7 10. a5 Nc5 11. a6 b6 12. a7 b7 13. a8=Q a8=Q 14. Nb1 Nb115. Nc3 Nc3 16. Na4
Na4 17. b5 b5 18.

Prefill Speed: 39.4 tok/s, Decode Speed: 19.8 tok/s, Time to First Token: 50 ms, Time Per
Output Token: 4698 ms, Grammar Per-token Overhead: 0.07 ms

https://huggingface.co/spaces/mlc-ai/VWebLLM-Structured-Generation-Playground

XGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models

CMU Catalyst

https://huggingface.co/spaces/mlc-ai/WebLLM-Structured-Generation-Playground

