
XGrammar: Flexible And Efficient
Structured Generation Engine

for Large Language Models

Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu,
Yilong Zhao, Tianqi Chen

Dec 21, 2024

CMU Catalyst

Problem: LLM Generation with Structures

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 2

Fig: https://arxiv.org/pdf/2304.11477

Code generation Function/tool calling Embodied Agents

Language Code JSON Schema DSL (e.g. PDDL)

Structured Outputs

Problem: LLM's Limited Ability with Complex
Structures

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 3

Structures are increasingly complex
● Advanced agents
● Complex tool calling
● DSLs unfamiliar to LLMs

LLM's generation ability is limited
● On-device small LMs
● Compressed models

Background: Constrained Decoding

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 4

An example of constrained decoding with JSON Schema

Background: Constrained Decoding

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 5

Apply a per-token mask to

prevent generating invalid tokens

according to the structure

The overhead of the mask generator

is crucial!

XGrammar: Flexible and Efficient Structured Generation
Engine

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 6

XGrammar is a structured generation library that features

Flexibility: Full support for context-free grammar

Efficiency: SOTA performance in constraint decoding

 Zero-overhead JSON Schema generation

Integration: Easy to integrate with existing LLM serving frameworks

 vLLM, MLC-LLM, SGLang, etc

XGrammar: Flexible and Efficient Structured Generation
Engine

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 7

XGrammar is a structured generation library that features

Flexibility: Full support for context-free grammar

Efficiency: SOTA performance in constraint decoding

 Zero-overhead JSON Schema generation

Integration: Easy to integrate with existing LLM serving frameworks

 vLLM, MLC-LLM, SGLang, etc

More Powerful: Context-free Grammar

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 8

Prior methods mainly support regex as input grammar

XGrammar support the more powerful CFG,

therefore supporting

● Regex

● JSON, JSON Schema

● SQL

● Python (w/ additional state maintained)

More Powerful: Pushdown Automata

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 9

● XGrammar utilizes pushdown automata to match string to CFG

● The matching process is a recursive expansion of rules

Pushdown Automata (Cont’d)

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 10

● It is possible that a string can

map to multiples stacks due to

ambiguity

XGrammar: Flexible and Efficient Structured Generation
Engine

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 11

XGrammar is a structured generation library that features

Flexibility: Full support for context-free grammar

Efficiency: SOTA performance in constraint decoding

 Zero-overhead JSON Schema generation

Integration: Easy to integrate with existing LLM serving frameworks

 vLLM, MLC-LLM, SGLang, etc

Previous Mask Generation Method

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 12

Check if each token matches,

then generate the mask

Every token checking is very slow!

Our optimization: most token
checking can be fast via
preprocessing

Optimization #1. The Local Token Mask Cache

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 13

● Most tokens can be determined ahead of

time – context-independent tokens

● Plus a minority of tokens that need to

check at runtime – context-dependent

tokens

● So before running, we can compile a

token mask cache – for each node,

calculate accept/reject for the

context-independent tokens

Context-dependent tokens: less than 1% for Llama-3.1 w/ JSON grammar (1134 out of 128k)

Thanks
Questions are welcome!

CMU Catalyst

● Paper: https://arxiv.org/abs/2411.15100

● Blog: https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar

● Code: https://github.com/mlc-ai/xgrammar

● Documentation: https://xgrammar.mlc.ai/docs/

● Wechat: ubospica, Email: yixind@andrew.cmu.edu

https://arxiv.org/abs/2411.15100
https://blog.mlc.ai/2024/11/22/achieving-efficient-flexible-portable-structured-generation-with-xgrammar
https://github.com/mlc-ai/xgrammar
https://xgrammar.mlc.ai/docs/

The Local Token Mask Cache (Cont’d)

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 15

● At runtime, given the node we are at, retrieve the pre-computed token mask

● Then compute the context-dependent token’s validity by checking the stack

The Local Token Mask Cache (Storage)

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 16

● For every stack top node, we store accepted/rejected/uncertain tokens.

● Accepted + Rejected + Uncertain = Vocabulary!

● We want the size of the pre-computed mask cache to be small!

● Three storage paradigms:

a) #accept is large → [Rejected list], [Uncertain list]

b) #reject is large → [Accepted list], [Uncertain list]

c) #accept and #reject similar → <Accepted_bitset>, <Uncertain_bitset>

● Store the one with least memory consumption!

On Llama-3.1 w/ JSON grammar, reduces total memory usage to 0.2% (from 160 MB to 0.46 MB)

The Challenge of Llama-3

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 17

● Vocab_size: 32k → 128k

● More common tokens

● #(uncertain tokens): 100 → 1.5k

○ Means 15x check at runtime

● Further reduction of uncertain tokens is needed!

Optimization #2. Context Expansion

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 18

● For every rule, find all its references

● Collect all possible suffix of that rule

● If an uncertain token does not fit into any of the

suffix, it is rejected

Reduce context-dependent

tokens by 90% on Llama-3.1

w/ JSON grammar

Optimization #3. Persistent Execution Stack

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 19

● Despite having most tokens pre-computed, we still need

to compute context-dependent tokens efficiently

● As mentioned earlier, we can have multiple possible

stacks due to the ambiguity

● We represent the stacks as a tree → avoids memory

redundancy for storing multiple stacks

● Instead of copying the stack, we only split the branch

● Also supports rolling the state back

Optimizations #4. Optimization Passes (Inlining)

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 20

● Inline small, fragmented rules into large rules

● Benefits:

○ Reducing recursion overhead

○ Providing more rule-local information for the local token mask cache

■ Fragmented rules lack rule-local information

Optimizations #4. Optimization Passes (Path merging)

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 21

● Merges paths with common prefix (when safe)

● Reduces number of possible parsing stacks

○ Need to be handled one by one when generating masks

○ In the recursive cases, #(parsing stacks) may explode exponentially!

XGrammar: Flexible and Efficient Structured Generation
Engine

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 22

XGrammar is a structured generation library that features

Flexibility: Full support for context-free grammar

Efficiency: SOTA performance in constraint decoding

 Zero-overhead JSON Schema generation

Integration: Easy to integrate with existing LLM serving frameworks

 vLLM, MLC-LLM, SGLang, etc

Overlapping Mask Generation and LLM Inference

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 23

● Top: constrained decoding pipeline without overlapping

● Bottom: constrained decoding pipeline with overlapping

Integration with LLM serving frameworks

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 24

● XGrammar is designed for easy integration and cross-platform support (with C++, Python,

and JavaScript APIs)

○ Its core is implemented in C++, so easy to port to other platforms

● XGrammar has already been integrated with vLLM, SGLang, MLC-LLM, WebLLM

Evaluation

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 25

Overhead of masking logits.
(Llama-3-8B, AMD 7950X CPU,
RTX 4090)

Up to 3.5x on JSON schema
Up to 10x on CFG-guided

Time per output token for
end-to-end LLM inference.
(Llama-3-8B, AMD 7950X CPU,
H100 GPU)

Up to 14x in JSON-schema
Up to 80x in CFG-guided

Try it out on WebLLM

CMU CatalystXGrammar: Flexible And Efficient Structured Generation Engine for Large Language Models 26

Run structured generation completely on your web browser with great efficiency!

https://huggingface.co/spaces/mlc-ai/WebLLM-Structured-Generation-Playground

https://huggingface.co/spaces/mlc-ai/WebLLM-Structured-Generation-Playground

