Generative Modeling By Rectified Flow --Concepts and Frontier

刘星超

Contents

- Background
- Framework of Rectified Flow
- Improvements and Applications
- Relationship with other frameworks

Background-AIGC

Images

Texts & Codes

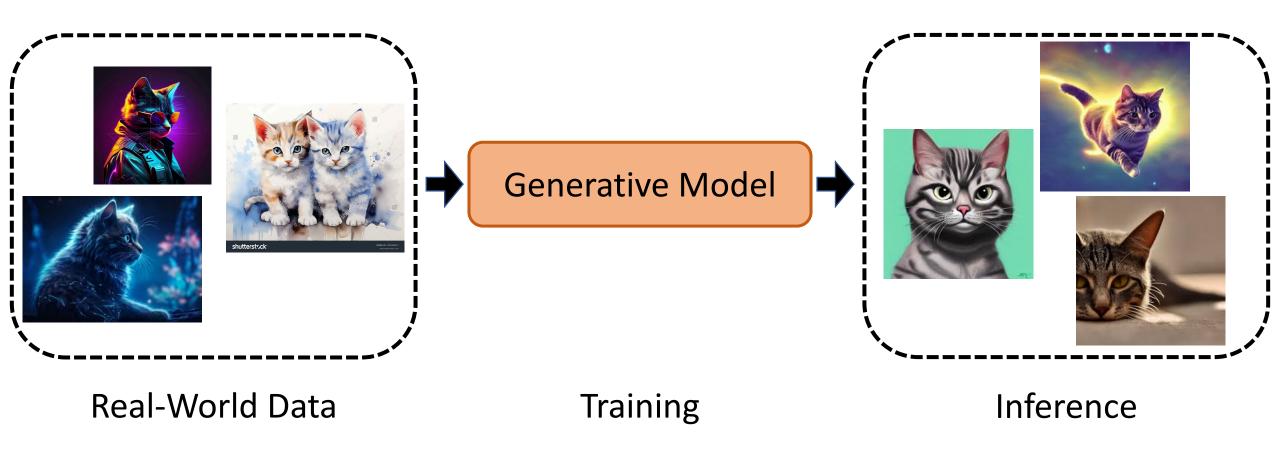
Text-to-Video generation: "a horse galloping on a street"

Text-to-Video generation: "a panda is playing guitar on times square"

Videos

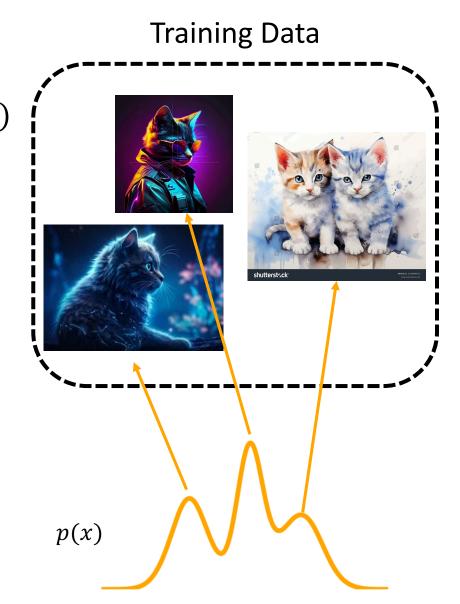
Policies

Pipeline of AIGC



Given: observed data points $\{x_i\}_{i=1}^n$

Unknown: the groundtruth data distribution p(x)



Given: observed data points $\{x_i\}_{i=1}^n$

Unknown: the groundtruth data distribution p(x)

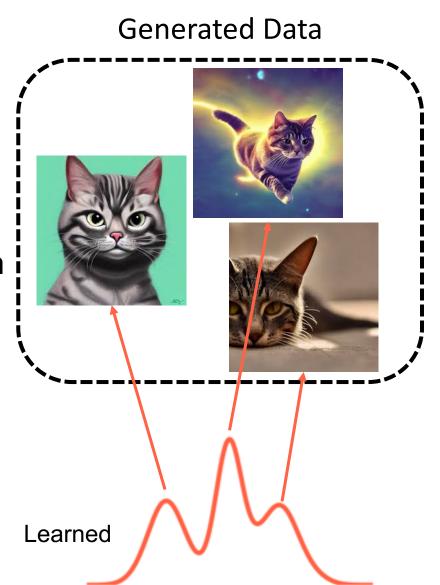
Training: to learn a **model** to capture p(x)

Sampling: generate from the learned distribution

A Good Generative Model
=
Good for training

+

Good for sampling



Good old methods

Normalizing Flow

GAN

VAE

EBM

- Complicated math
- Mediocre quality
- GAN and VAE have fast sampling
- Training them is HARD

Good old methods

Normalizing Flow

GAN

VAE

EBM

- Complicated math
- Mediocre quality
- GAN and VAE have fast sampling
- Training them is HARD

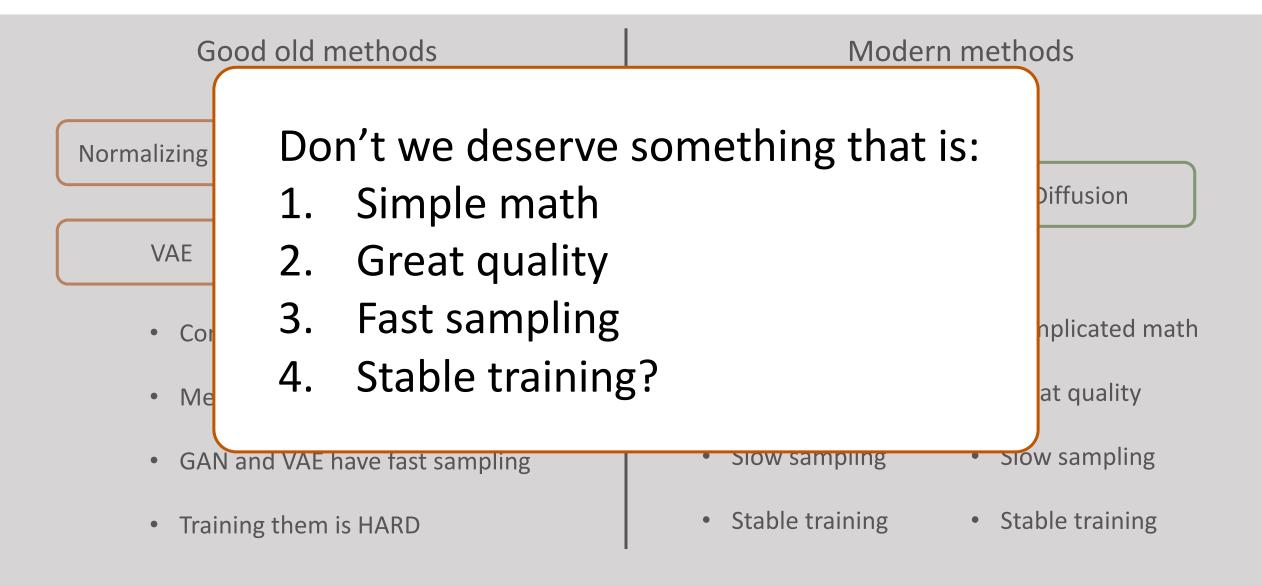
Modern methods

Autoregressive

Diffusion

- Simple math
- Great quality
- Slow sampling
- Stable training

- Complicated math
- Great quality
- Slow sampling
- Stable training



Life Made Simple by Rectified Flow

- Simple math
 - -- See right
- Great quality
 - -- FLUX, Kling...
- Fast sampling
 - -- One-step
- Stable training

DDPM

$$\begin{split} L_{\text{VLB}} &= \mathbb{E}_{q(\mathbf{x}0:T)} \Big[\log \frac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{0:T})} \Big] \\ &= \mathbb{E}_q \Big[\log \frac{\prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=1}^T \log \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \Big(\frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} \cdot \frac{q(\mathbf{x}_t|\mathbf{x}_0)}{q(\mathbf{x}_{t-1}|\mathbf{x}_0)} \Big) + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_t|\mathbf{x}_0)}{q(\mathbf{x}_{t-1}|\mathbf{x}_0)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[-\log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{q(\mathbf{x}_1|\mathbf{x}_0)} + \log \frac{q(\mathbf{x}_1|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_0|\mathbf{x}_1)} \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)} - \log p_{\theta}(\mathbf{x}_0|\mathbf{x}_1) \Big] \\ &= \mathbb{E}_q \Big[\log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T \log \frac{q(\mathbf{x}_T|\mathbf{x}_0)}{p_{\theta}(\mathbf{x}_T)} + \sum_{t=2}^T$$

Rectified Flow

$$L = \int_0^1 \mathbb{E}_{X_0 \sim \text{noise,}} [|| (X_1 - X_0) - v(X_t, t) ||^2] dt,$$

$$X_1 \sim \text{data}$$
with $X_t = t X_1 + (1 - t) X_0$

知乎@XCLiu

Rectified Flow – Problem of Interest

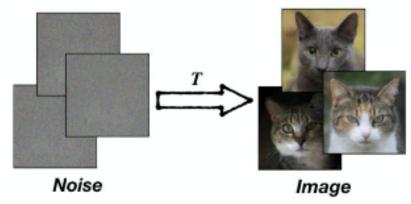
Given: observed data points from two distributions

$$\{x_i^0\}_{i=1}^n \sim \pi_0, \ \{x_i^1\}_{i=1}^n \sim \pi_1$$

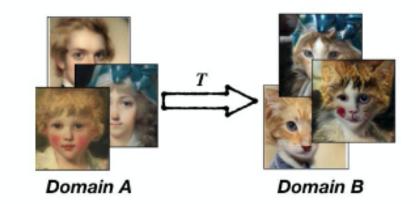
Goal: find a transport map *T* such that,

$$Z_1 \coloneqq T(Z_0) \sim \pi_1$$
 when $Z_0 \sim \pi_0$

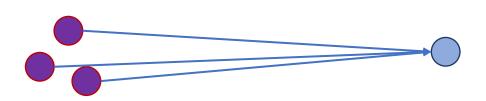
Generative Models



Domain Transfer



One-step generation is not hard... When your target distribution is simple

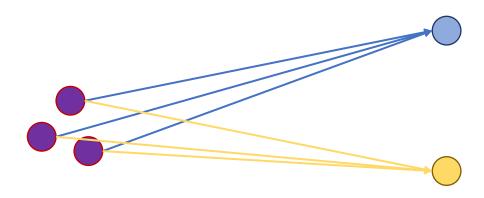


 $\pi_0 \sim N(0, I)$

 π_1 : a single data point

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| |T_{\theta}(X_0) - X_1| \right|^2$$

It starts to get harder even for two points

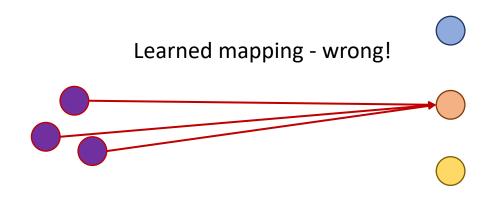


$$\pi_0 \sim N(0, I)$$

 π_1 : two data points

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| |T_{\theta}(X_0) - X_1| \right|^2$$

It starts to get harder even for two points

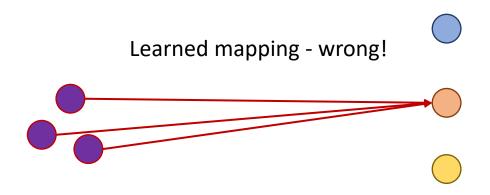


$$\pi_0 \sim N(0, I)$$

 π_1 : two data points

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| |T_{\theta}(X_0) - X_1| \right|^2$$

It starts to get harder even for two points
Regression won't give good generative models
How to fix?

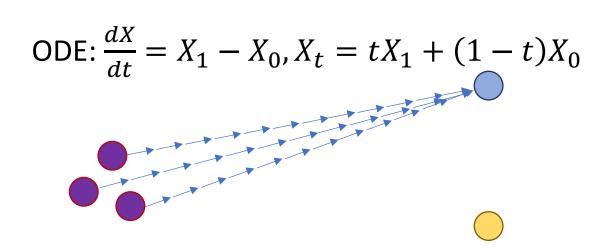


 $\pi_0 \sim N(0, I)$

 π_1 : two data points

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| |T_{\theta}(X_0) - X_1| \right|^2$$

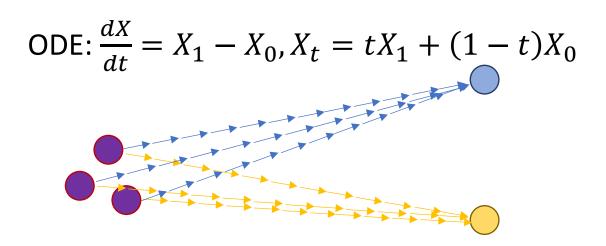
What if the mappings are now straight ODEs?



 $\pi_0 \sim N(0, I)$

 π_1 : two data points

What if the mappings are now straight ODEs?

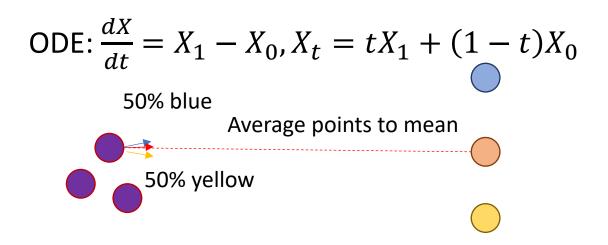


 π_1 : two data points

What if we average the velocity field instead?

 $\pi_0 \sim N(0, I)$

What if the mappings are now straight ODEs?



 π_1 : two data points

What if we average the velocity field instead?

 $\pi_0 \sim N(0, I)$

What if the mappings are now straight ODEs?

ODE:
$$\frac{dX}{dt} = X_1 - X_0, X_t = tX_1 + (1 - t)X_0$$

More blue

Average biases towards blue

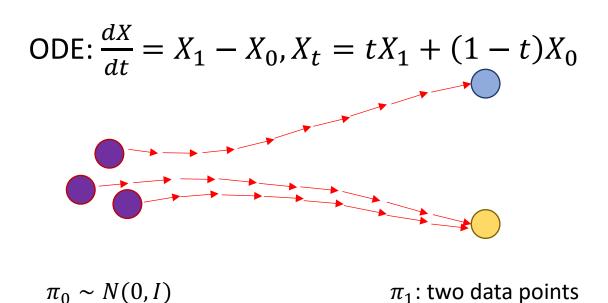
Less yellow

$$\pi_0 \sim N(0, I)$$

 π_1 : two data points

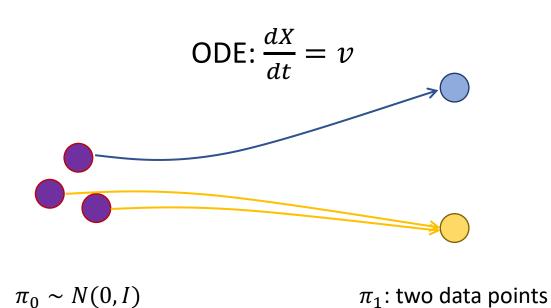
What if we average the velocity field instead? t=0.1

What if the mappings are now straight ODEs?



What if we average the velocity field instead?

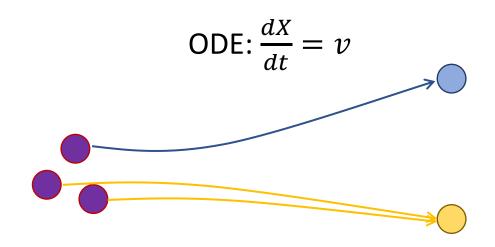
What if the mappings are now straight ODEs?



What if we average the velocity field instead?

We get a vector field that maps to the correct distribution with flows

What if the mappings are now straight ODEs?



 $\pi_0 \sim N(0, I)$

 π_1 : two data points

Let's learn a NN to copy this flow field!

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - v(X_t, t) \right| \right|^2$$

Let's learn a NN to copy this flow field!

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - v(X_t, t) \right| \right|^2, where \ X_t = tX_1 + (1 - t)X_0$$

$$v(X_t, t) \text{ is the average of all the velocity vectors passing } (X_t, t)$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - E_{X_0' \sim \pi_0, X_1' \sim \pi_1} [X_1' - X_0' | tX_1' + (1 - t)X_0' = X_t] \right| \right|^2$$

Let's learn a NN to copy this flow field!

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - v(X_t, t) \right| \right|^2, where \ X_t = tX_1 + (1 - t)X_0$$

$$\bigvee_{\theta} (X_t, t) \text{ is the average of all the velocity vectors passing } (X_t, t)$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - E_{X_0' \sim \pi_0, X_1' \sim \pi_1} [X_1' - X_0' | tX_1' + (1 - t)X_0' = X_t] \right| \right|^2$$

$$An equation that holds for L2$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - (X_1 - X_0) \right| \right|^2$$

Let's learn a NN to copy this flow field!

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| |v_{\theta}(X_t, t) - v(X_t, t)| \right|^2, where \ X_t = tX_1 + (1 - t)X_0$$

$$v(X_t, t) \text{ is the average of all the velocity vectors passing } (X_t, t)$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - E_{X_0' \sim \pi_0, X_1' \sim \pi_1} [X_1' - X_0' | t X_1' + (1 - t)X_0' = X_t] \right| \right|^2$$

$$An equation that holds for L2$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - (X_1 - X_0) \right| \right|^2$$

Randomly select two points and compute the velocity

Let's learn a NN to copy this flow field!

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - v(X_t, t) \right| \right|^2, where X_t = tX_1 + (1 - t)X_0$$

$$v(X_t, t) \text{ is the average of all the velocity vectors passing } (X_t, t)$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - E_{X_0' \sim \pi_0, X_1' \sim \pi_1} [X_1' - X_0' | tX_1' + (1 - t)X_0' = X_t] \right| \right|^2$$

$$An equation that holds for L2$$

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| \left| v_{\theta}(X_t, t) - (X_1 - X_0) \right| \right|^2$$

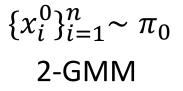
Randomly select two points and compute the velocity

Derivation is not related to the forms of π_0 and π_1 -Works for (under mild conditions) arbitrary π_0 and π_1 !

Rectified Flow – Another View

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 \sim \pi_1} \left| |v_{\theta}(X_t, t) - (X_1 - X_0)| \right|^2$$

Randomly select two points and compute the velocity



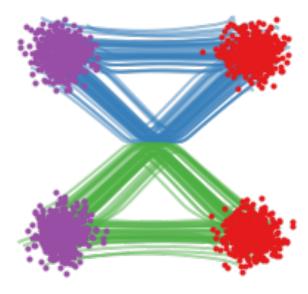
$$\{x_i^1\}_{i=1}^n \sim \pi_1$$
2-GMM



Linear Interpolation: $X_t = tX_1 + (1-t)X_0$

ODE:
$$\frac{dX}{dt} = X_1 - X_0$$

Learned Flow



Simulate with ODE solver, e.g., Euler

ODE:
$$\frac{dX}{dt} = v_{\theta}(X, t)$$

Probability Flow Ordinary Differential Equation

Rectified Flow – Algorithm

- Given: $\{x_i^0\}_{i=1}^n \sim \pi_0$, $\{x_i^1\}_{i=1}^n \sim \pi_1$
- Training Iteration (Batch size = 1):
 - Step 1: Randomly sample $X_0 \in \{x_i^0\}_{i=1}^n$ and $X_1 \in \{x_i^1\}_{i=1}^n$
 - Step 2: Randomly sample $t \in [0,1]$
 - Step 3: Compute gradient with loss

$$L(\theta) \coloneqq \left| |X_1 - X_0 - v_{\theta}(X_t, t)| \right|^2,$$

where $X_t = tX_1 + (1 - t)X_0$

Rectified Flow – Implementation

Input: Data={x0, x1} # Output: Model v(x,t) for the rectified flow initialize Model for x0, x1 in Data: # x0, x1: samples from π0, π1 Optimizer.zero_grad() t = torch.rand(batchsize) # Randomly sample t∈ [0,1] Loss = (Model(t*x1+(1-t)*x0, t) - (x1-x0)).pow(2).mean() Loss.backward() Optimizer.step() return Model

Algorithm 3 Sample (Model, Data)

```
# Input: Model v(x,t) of the rectified flow # Output: draws of the rectified coupling (Z_0,Z_1) coupling = [] for x0, _ in Data: # x0: samples from \pi_0 (batchsize×dim) x1 = model.ODE_solver(x0) coupling.append((x0, x1)) return coupling
```

CIFAR10

Method	NFE (↓)	IS (↑)	FID (↓)
VP SDE	2000	9.58	2.55
subVP SDE	2000	9.56	2.61
VP ODE	140	9.37	3.93
subVP ODE	146	9.46	3.16
Rectified Flow	127	9.60	2.58

Fast sampling + high-quality

(A) LSUN Church

(B) CelebA HQ

(C) LSUN Bedroom

(D) AFHQ Cat

256 Resolution

Rectified Flow – Common Misunderstandings

- 1. Straight Line
- 2. Why does it avoid crossing?

Rectified Flow

Don't we deserve something that is:

- 1. Simple math
- 2. Great quality
- 3. Fast sampling

4. Stable training?

Rectified Flow - Sampling

• In computer, we solve ODEs by Euler discretization

$$X_{t+\epsilon} = X_t + \epsilon \ v(X_t, t)$$

 ϵ : step size

Large ϵ : Fast, inaccurate; Small ϵ : Accurate, slow

Rectified Flow - Sampling

In computer, we solve ODEs by Euler discretization

$$X_{t+\epsilon} = X_t + \epsilon \ v(X_t, t)$$

 ϵ : step size

Large ϵ : Fast, inaccurate ; Small ϵ : Accurate, slow

Curved Trajectory

$$N = 5$$
, $\epsilon = 1/N$

Straight Trajectory

$$N=1, \epsilon=1/N$$

$$\mathrm{d}X = v(X, t)\mathrm{d}t$$

Rectified Flow - Reflow

Why not straight?

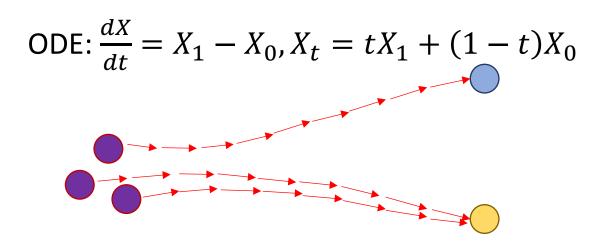
$$ODE: \frac{dX}{dt} = X_1 - X_0, X_t = tX_1 + (1 - t)X_0$$

 π_1 : two data points

 $\pi_0 \sim N(0, I)$

Rectified Flow – Reflow

What if we change the teacher?



 $\pi_0 \sim N(0, I)$

 π_1 : two data points

There is no more crossing in the learned flow! Good coupling only! Keeps the correct distribution π_1 !

Rectified Flow - Reflow

Construct new straight-line teachers

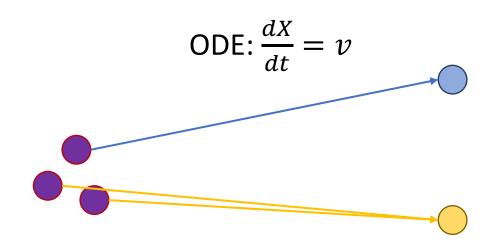
$$ODE: \frac{dX}{dt} = X_1 - X_0, X_t = tX_1 + (1 - t)X_0$$

 π_1 : two data points

 $\pi_0 \sim N(0, I)$

Rectified Flow - Reflow

New flow – straighter!



$$\pi_0 \sim N(0, I)$$

 π_1 : two data points

Learning NN by copying this new field gives faster model

$$\min_{\theta} E_{X_0 \sim \pi_0, X_1 = ODE_{v_{old}}(X_0)} \left| |v_{\theta}(X_t, t) - v(X_t, t)| \right|^2$$

Rectified Flow – Implementation of Reflow

```
# Input: Data={x0, x1}
# Output: draws of the K-th rectified coupling

Coupling = Data
for k = 1,...,K:
    Model = Train(Coupling)
    Coupling = sample(Model, Data)

return Coupling
```

Algorithm 2 Train (Data)

```
# Input: Data=\{x0, x1\}
# Output: Model v(x,t) for the rectified flow initialize Model for x0, x1 in Data: # x0, x1: samples from \pi_0, \pi_1
Optimizer.zero.grad()
t = torch.rand(batchsize) # Randomly sample t \in [0,1]
Loss = ( Model(t*x1+(1-t)*x0, t) - (x1-x0) ).pow(2).mean()
Loss.backward()
Optimizer.step()
return Model
```

Rectified Flow – Difference Between Distillation & Reflow

Distillation

$$\min_{\phi} E_{X_0 \sim \pi_0, X_1 = ODE_{v_{old}}(X_0)} \| f_{\phi}(X_0) - X_1 \|^2$$

- Output: One-step generation
- Not invertible

Reflow

$$\min_{\theta} \int_{0}^{1} \mathbf{E}_{X_{0} \sim \pi_{0}, X_{1} = ODE_{v_{old}}(X_{0})} \left[\left| \left| \left| (X_{1} - X_{0}) - v_{\theta}(X_{t}, t) \right| \right|^{2} \right] dt$$

- Output: Straighter Flow, Any-step generation
- Invertible
- The resulting flow is more friendly for distillation

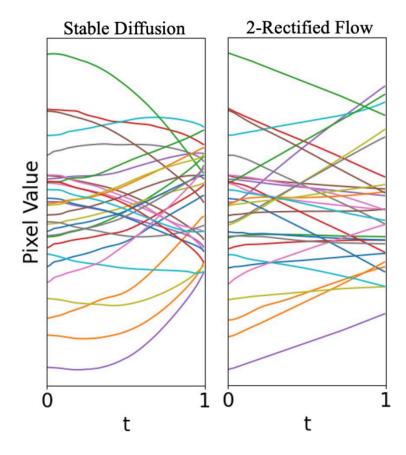
CIFAR10

Method	NFE (↓)	IS (↑)	FID (↓)
1-Rectified Flow	127	9.60	2.58
2-Rectified Flow	110	9.24	3.36
3-Rectified Flow	104	9.01	3.96

Method	NFE (↓)	IS (↑)	FID (↓)
1-Rectified Flow	1	1.13	378
2-Rectified Flow	1	8.08	12.21
3-Rectified Flow	1	8.47	8.15

Method	NFE (↓)	IS (↑)	FID (↓)
1-Rectified Flow+Distill	1	9.08	6.18
2-Rectified Flow+Distill	1	9.01	4.85
3-Rectified Flow+Distill	1	8.79	5.21

SOTA (when arXiv)



Rectified Flow

Don't we deserve something that is:

1. Simple math

Sam Altman 🤣

2. Great quality

V

@sama

3. Fast sampling

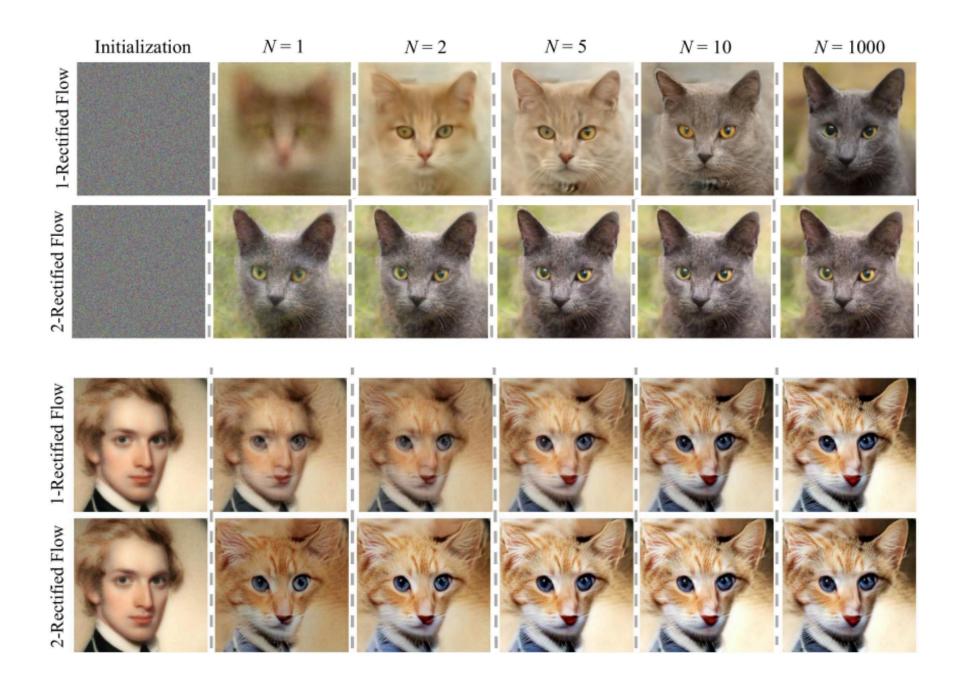
V

scaling laws are decided by god;

4. Stable training?

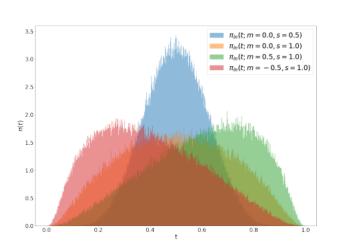
V

And so is the correctness of RF!



Questions?

Applications – Stable Diffusion 3(, Kling...)



	rank averaged over		
variant	all	5 steps	50 steps
rf/lognorm(0.00, 1.00)	1.54	1.25	1.50
rf/lognorm(1.00, 0.60)	2.08	3.50	2.00
rf/lognorm(0.50, 0.60)	2.71	8.50	1.00
rf/mode(1.29)	2.75	3.25	3.00
rf/lognorm(0.50, 1.00)	2.83	1.50	2.50
eps/linear	2.88	4.25	2.75
rf/mode(1.75)	3.33	2.75	2.75
rf/cosmap	4.13	3.75	4.00
edm(0.00, 0.60)	5.63	13.25	3.25
rf	5.67	6.50	5.75
v/linear	6.83	5.75	7.75
edm(0.60, 1.20)	9.00	13.00	9.00
v/cos	9.17	12.25	8.75
edm/cos	11.04	14.25	11.25
edm/rf	13.04	15.25	13.25
edm(-1.20, 1.20)	15.58	20.25	15.00

Table 1. **Global ranking of variants.** For this ranking, we apply non-dominated sorting averaged over EMA and non-EMA weights, two datasets and different sampling settings.

Prove the effectiveness of RF through EXTENSIVE experiments

ImageNet		CC12M	
CLIP	FID	CLIP	FID
0.247	49.70	0.217	94.90
0.236	63.12	0.200	116.60
0.245	48.42	0.222	90.34
0.244	50.74	0.209	97.87
0.246	51.68	0.217	100.76
0.256	80.41	0.233	120.84
0.253	44.39	0.218	94.06
0.254	114.26	0.234	147.69
0.248	<u>45.64</u>	0.219	89.70
0.250	45.78	0.224	<u>89.91</u>
	0.247 0.236 0.245 0.244 0.246 0.256 0.253 0.254 0.248	CLIP FID 0.247 49.70 0.236 63.12 0.245 48.42 0.244 50.74 0.246 51.68 0.256 80.41 0.253 44.39 0.254 114.26 0.248 45.64	CLIP FID CLIP 0.247 49.70 0.217 0.236 63.12 0.200 0.245 48.42 0.222 0.244 50.74 0.209 0.246 51.68 0.217 0.256 80.41 0.233 0.253 44.39 0.218 0.254 114.26 0.234 0.248 45.64 0.219

Table 2. Metrics for different variants. FID and CLIP scores of different variants with 25 sampling steps. We highlight the **best**, second best, and *third best* entries.

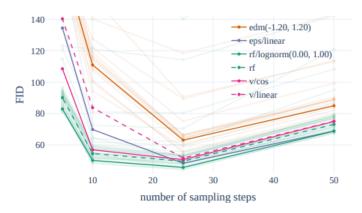
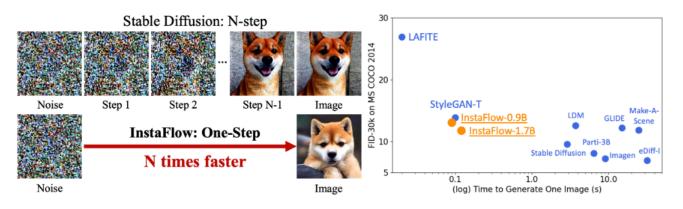


Figure 3. Rectified flows are sample efficient. Rectified Flows perform better then other formulations when sampling fewer steps. For 25 and more steps, only rf/lognorm(0.00, 1.00) remains competitive to eps/linear.

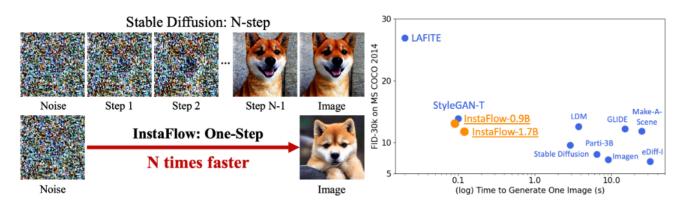
Applications – InstaFlow

Will the rectified flow pipeline still work in Stable Diffusion level?



Applications – InstaFlow

Will the rectified flow pipeline still work in Stable Diffusion level?



Text-Conditioned Reflow:

Random text from text dataset Text-conditioned model

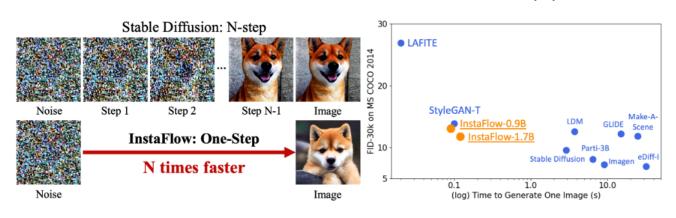
$$egin{aligned} v_{k+1} &= rg\min_v \mathbb{E}_{X_0 \sim \pi_0, \mathcal{T} \sim D_{\mathcal{T}}} \left[\int_0^1 \mid\mid (X_1 - X_0) - v(X_t, t \mid \mathcal{T}) \mid\mid^2 \mathrm{d}t
ight], \ & ext{with} \quad X_1 &= ext{ODE}[v_k](X_0 \mid \mathcal{T}) \quad ext{and} \quad X_t &= tX_1 + (1 - t)X_0, \end{aligned}$$

Text-conditioned generation

- Text Dataset: 1.6M data points from LAION-2B (aesthetics score 6.0+)
- Model: Stable Diffusion (as 1-Rectified Flow)
- Training cost: 199 A100 GPU days (InstaFlow 0.9B)

Applications – InstaFlow

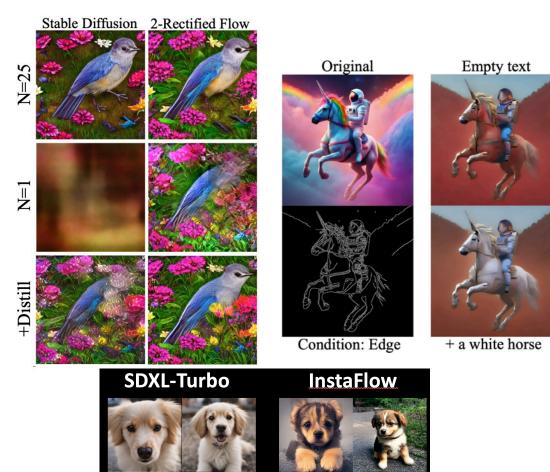
Will the rectified flow pipeline still work in Stable Diffusion level?



Text-Conditioned Reflow:

Random text from text dataset Text-conditioned model $v_{k+1} = \underset{v}{\arg\min} \mathbb{E}_{X_0 \sim \pi_0, \overline{T \sim D_T}} \left[\int_0^1 || \ (X_1 - X_0) - \overline{v(X_t, t \mid \mathcal{T})} \ ||^2 \ \mathrm{d}t \right],$ with $\overline{X_1 = \mathtt{ODE}[v_k](X_0 \mid \mathcal{T})}$ and $X_t = tX_1 + (1 - t)X_0,$ Text-conditioned generation

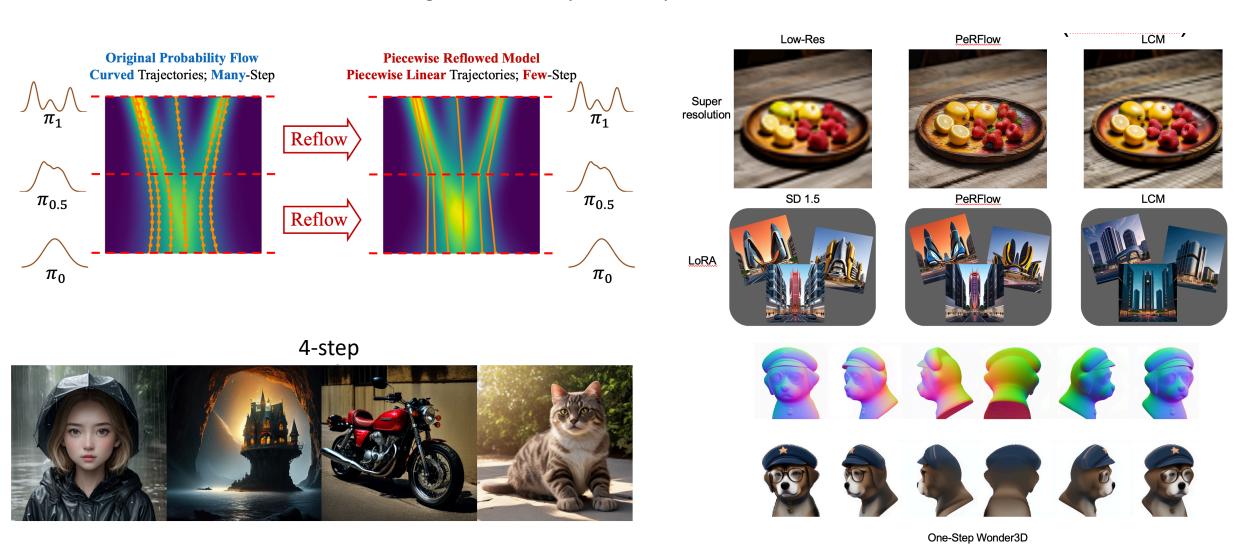
- Text Dataset: 1.6M data points from LAION-2B (aesthetics score 6.0+)
- Model: Stable Diffusion (as 1-Rectified Flow)
- Training cost: 199 A100 GPU days (InstaFlow 0.9B)



4 random samples of

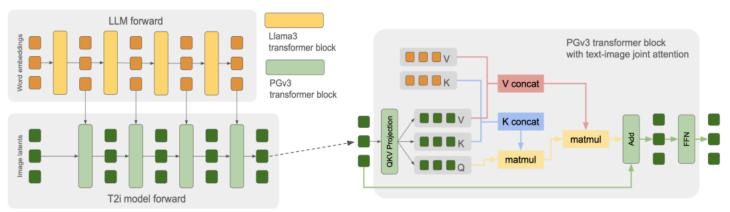
Applications – PeRFlow

Generating 1.6M data triplets is expensive. How to avoid that?

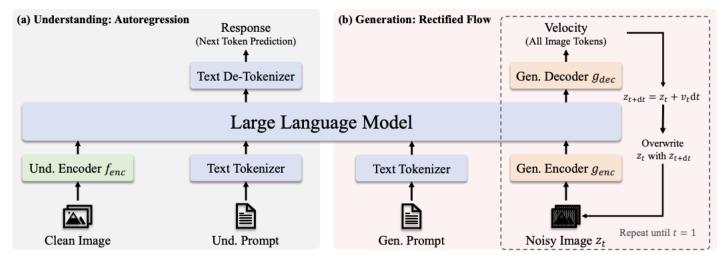


Applications – Janus Flow

Can we unify text-to-image model?



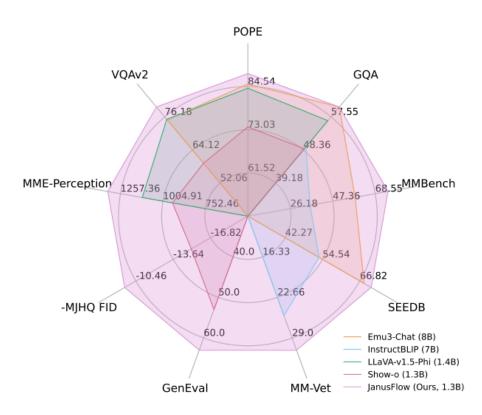
Playground v3 and all the previous works



JanusFlow

LLMs are so magical

Applications – Janus Flow

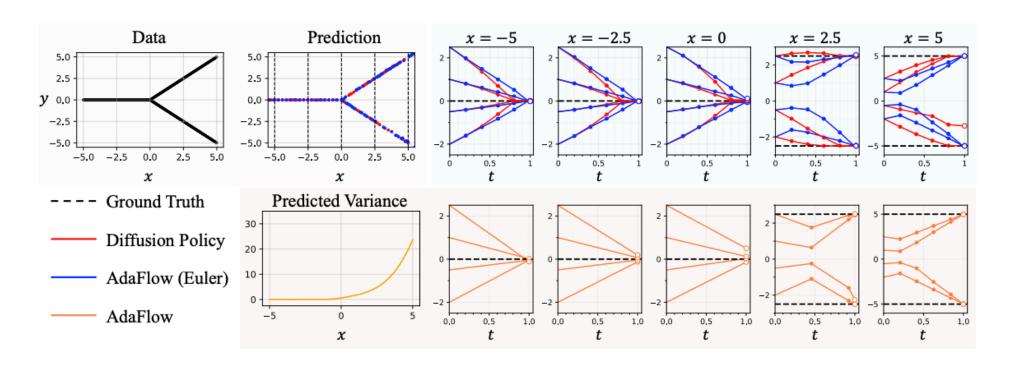


(a) Benchmark Performances.

(b) Visual Generation Results.

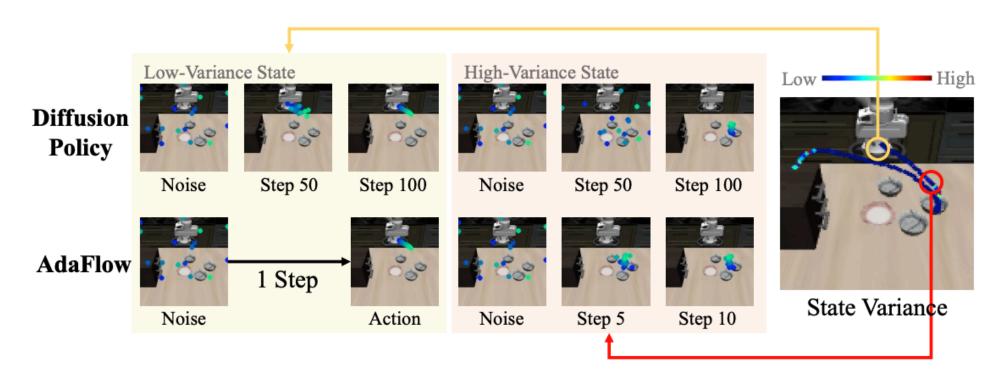
Applications – AdaFlow

We can also extend the RF to imitation learning to control robots An adaptive policy for faster inference – Real-time is important!

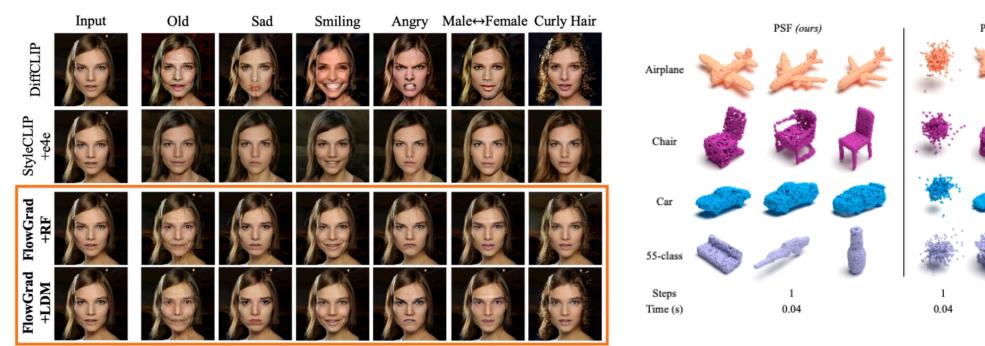


Applications – AdaFlow

We can also extend the RF to imitation learning to control robots An adaptive policy for faster inference – Real-time is important!

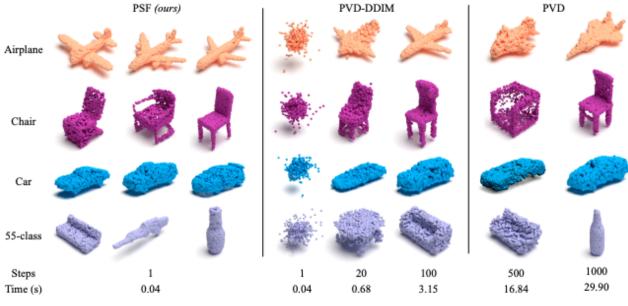


Applications – More



FlowGrad

Fast gradient-based editing with probability flows [**Liu** et al., CVPR 2023]



Point Straight Flow

One-step point cloud generation (100 \times faster) [Wu et al., CVPR 2023]

RF <-> GANs

Similarity

Goal: Matching noises with data

Sampling: Fast

Difference

Explicit vs Implicit

Any-step generation vs One-step

Training: Supervised vs Adversarial

Likelihood vs Non-Likelihood

RF <-> VAEs

Similarity

Encoder-Decoder

Gaussian matching

Difference

Continuous vs One-step

Explicit vs Implicit

Training: Supervised vs Highly noisy

High-quality vs Over-smoothed

RF <-> Normalizing Flows

Similarity

RFs are continuous normalizing flows

Not MLE, RF is a new paradigm for training CNFs

Difference

Eliminate the unscalable designs in training CNFs with MLE

RF <-> Diffusion Models

Similarity

Diffusion models can be transformed to RFs

Mathematically, DMs are equivalent to Gaussian RFs

Likelihood models

Difference

RFs are not restricted to Gaussian π_0

Reflow

RF way is much easier to understand & practical advantages!

RF <-> Autoregressive Models

Similarity

RF sampling is actually autoregressive

$$X_{t+\epsilon} = X_t + \epsilon \ v(X_t, t)$$

Even Markovian...

Difference

Implementation

RF <-> Consistency Models

Similarity

Sampling: Fast

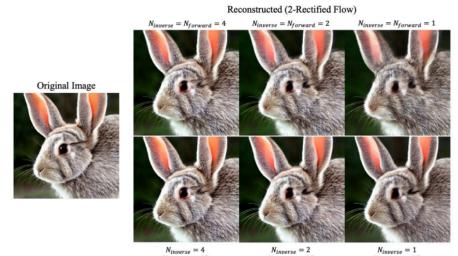
Relationship with DMs

Orthogonal Methods! You can train consistency models from RF

Difference

Sampling Convergence

Invertible vs Non-invertible (Likelihood vs Non-likelihood)



References

- 1. Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow, ICLR 2023 Xingchao Liu, Chengyue Gong, Qiang Liu
- 2. InstaFlow: One Step is Enough for High-Quality Diffusion-Based Text-to-Image Generation, ICLR 2024 *Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, Qiang Liu*
- 3. PeRFlow: Piecewise Rectified Flow as Universal Plug-and-Play Accelerator, NeurIPS 2024 Hanshu Yan, Xingchao Liu, Jiachun Pan, Jun Hao Liew, Qiang Liu, Jiashi Feng
- 4. AdaFlow: Imitation Learning with Variance-Adaptive Flow-Based Policies, NeurIPS 2024 *Xixi Hu, Bo Liu, Xingchao Liu, Qiang Liu*
- 5. JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation Yiyang Ma, Xingchao Liu, Xiaokang Chen, Wen Liu, Chengyue Wu, Zhiyu Wu, Zizheng Pan, Zhenda Xie, Haowei Zhang, Xingkai yu, Liang Zhao, Yisong Wang, Jiaying Liu, Chong Ruan
- 6. FlowGrad: Controlling the Output of Generative ODEs with Gradients, CVPR 2023 *Xingchao Liu, Lemeng Wu, Shujian Zhang, Chengyue Gong, Wei Ping, Qiang Liu*
- 7. Fast Point Cloud Generation with Straight Flows, CVPR 2023

 Lemeng Wu, Dilin Wang, Chengyue Gong, Xingchao Liu, Yunyang Xiong, Rakesh Ranjan, Raghuraman Krishnamoorthi, Vikas Chandra, Qiang Liu

Rectified Flow: https://github.com/gnobitab/RectifiedFlow

InstaFlow: https://github.com/gnobitab/InstaFlow

PeRFlow: https://github.com/magic-research/piecewise-rectified-flow

AdaFlow: https://github.com/hxixixh/adaflow

FlowGrad: https://github.com/gnobitab/FlowGrad

Point Straight Flow: https://github.com/klightz/PSF

JanusFlow: https://github.com/deepseek-ai/Janus

Thank you!

Questions?