DuQuant: Distributing Outliers via Dual Transformation Makes Stronger Quantized LLMs

NeurIPS 2024 Oral

Haokun Lin^{*1,3,4}, Haobo Xu^{*2}, Yichen Wu^{*4}, Jingzhi Cui², Yingtao Zhang², Linzhan Mou⁵, Linqi Song⁴, Zhenan Sun^{^1,3}, Ying Wei^{^5}

*Equal Contribution ^Corresponding Authors

¹School of Artificial Intelligence, University of Chinese Academy of Sciences

²Tsinghua University ³NLPR & MAIS, Institute of Automation, Chinese Academy of Sciences

⁴City University of Hong Kong ⁵Zhejiang University

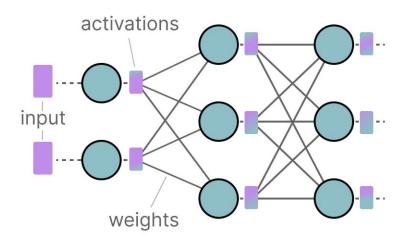
Haokun Lin

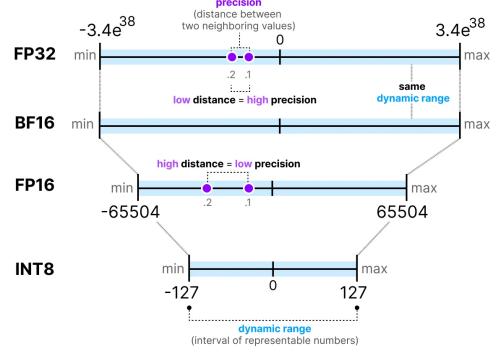
haokun.lin@cripac.ia.ac.cn

Project: https://duquant.github.io/

- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b.** Permutation Transformation
 - c. Experiments
- **04** Summary and discussion

- > Network Quantization
 - > Reduce redundancy in network representation
 - > FP16 --- Low bits storage
- ➤ What to quantize?
 - Weights W
 - Activations X
 - Gradients





- Quantization scale
 - Binarization: binarize to -1 or +1.
 - m-bit quantization: int4 int8

memory =
$$\frac{\text{nr_bits}}{8} \times \text{nr_params}$$

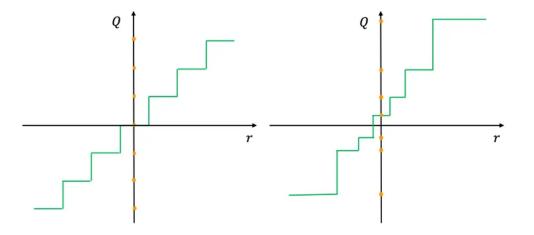
Original model: S FP32

Binary model: $\frac{S}{32}$

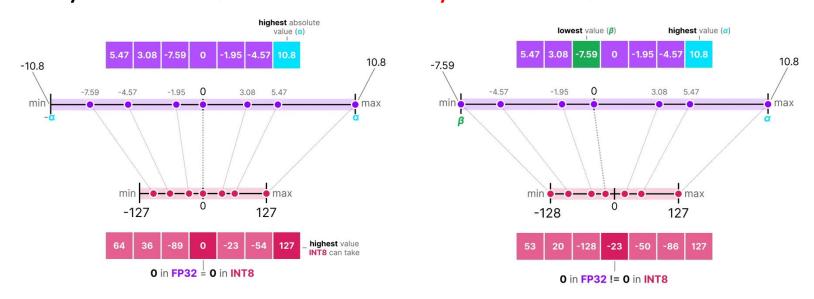
m-bit quantized model: $\frac{mS}{32}$

Smaller storage

- > PTQ
 - train a full-precision model
 - > quantize with little or no data
- Uniform Quantization vs Non-Uniform Quantization



Symmetric Quantization vs Asymmetric Quantization

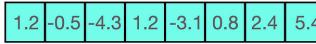


- MinMax Quantization
 - > X: Float format
 - $\succ X_q$: Int format
 - \triangleright Δ : Scaling factor
 - > z: Zero point
- > INT8 symmetric quantization

 $Quant: \mathbf{X}_q = ext{clamp}\left(\left\lfloor rac{\mathbf{X}}{\Delta}
ight
vert + z, 0, 2^b - 1
ight) \quad De ext{-}quant: \hat{oldsymbol{X}} = s\left(\left\lfloor rac{\mathbf{X}}{\Delta}
ight
vert - z
ight) pprox oldsymbol{X}$

Rounding Function Nearest Rounding

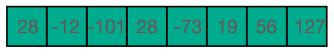
$$\Delta = rac{\max(\mathbf{X}) - \min(\mathbf{X})}{2^b - 1}, z = -\left\lfloor rac{\min(\mathbf{X})}{\Delta}
ight
ceil$$



Get quantisation factor a

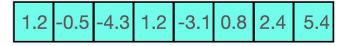
[-127, 127

- > Fake Quantization
 - > Dequantize to FP16 for computation



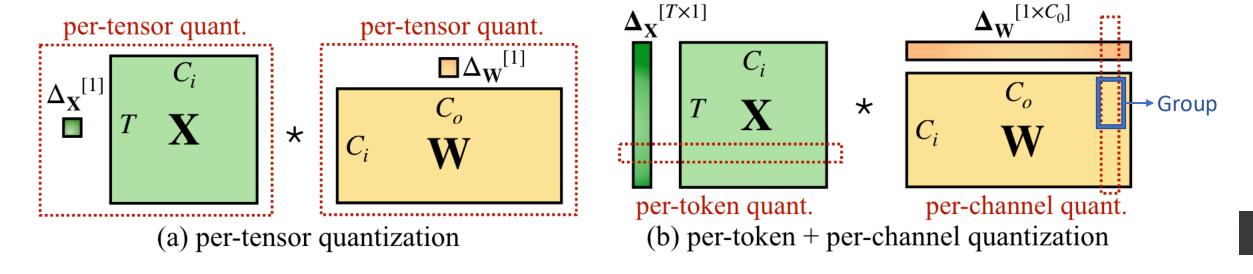
Quantized - int8 vector

Divide by $\boldsymbol{\alpha}$



de-Quantized - fp16 vector

- Quantization scale
 - > Per-tensor: one matrix has one zero-point and scaling factor
 - > Per-channel: each output channel has one zero-point and scaling factor
 - > Per-token: token-level for activation
 - Fine-grained group wise: divide the channel to small groups
- > For DuQuant
 - > Per-token for activation and per-channel for wight in WA setting
 - ➤ Quantize all activations including KV caches

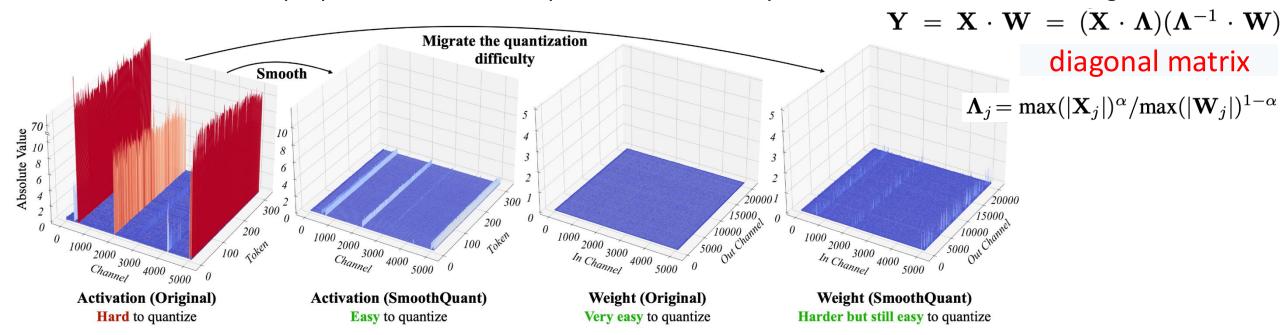


- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b.** Permutation Transformation
 - c. Experiments
- **04** Summary and discussion

SmoothQuant

≻Normal Outliers

- Channels in the activation map whose magnitudes are obviously larger than other channels
- Outliers occur for almost all sequence dimensions (tokens) but are limited to specific feature/hidden dimensions. $s = \frac{\max(X) \min(X)}{2^b 1}, \quad z = \left\lfloor -\frac{\min(X)}{s} \right\rfloor$
- Outliers makes the quantization difficult
- SmoothQuant propose to transfer the quantization difficulty from activations to model weights



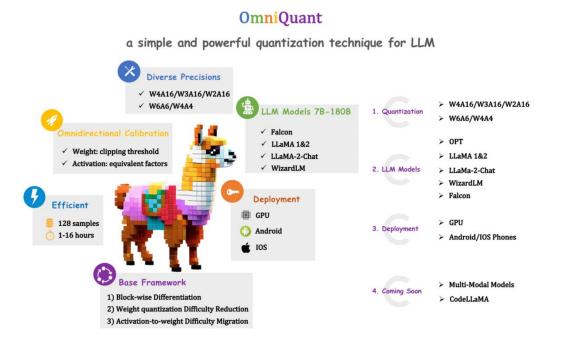
[1]. Xiao G, Lin J, Seznec M, et al. Smoothquant: Accurate and efficient post-training quantization for large language models[C] International Conference on Machine Learning. PMLR, 2023: 38087-38099.

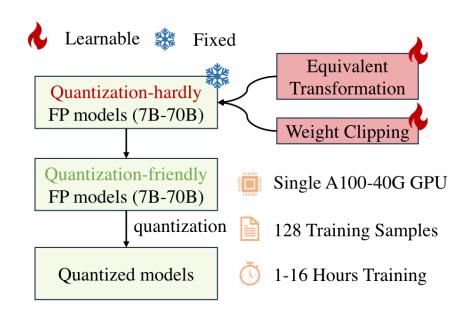
OmniQuant

>Two Learnable Modules

- Make the parameters of quantization learnable using a few samples under PTQ settings
- Learnable Weight Clipping (LWC) and Learnable Equivalent Transformation (LET).
- Formulate a block-wise quantization pipeline for LLM

$$\arg\min_{\Theta_1,\Theta_2} || \mathcal{F}(\mathbf{W}, \mathbf{X}) - \mathcal{F}(Q_w(\mathbf{W}; \Theta_1, \Theta_2), Q_a(\mathbf{X}, \Theta_2)) ||$$





Learnable Weight Clipping

- > Reduce the difficulty of quantizing weights in LLM
- \triangleright N --- target bit, W --- full precision weight, W_q --- quantized weight
- ➤ h --- scaling factor, z --- zero point
- > Learnable clipping strengths for the upper and the lower bound of weights

$$\gamma \in [0,1]$$
 and $\beta \in [0,1]$ \longrightarrow $\Theta_1 = \{\gamma,\beta\}$

$$\mathbf{W_q} = \operatorname{clamp}(\lfloor \frac{\mathbf{W}}{h} \rceil + z, 0, 2^N - 1), \text{ where } h = \frac{\gamma \max(\mathbf{W}) - \beta \min(\mathbf{W})}{2^N - 1}, z = -\lfloor \frac{\beta \min(\mathbf{W})}{h} \rceil$$

$$\arg\min_{\Theta_1,\Theta_2} || \mathcal{F}(\mathbf{W}, \mathbf{X}) - \mathcal{F}(Q_w(\mathbf{W}; \Theta_1, \Theta_2), Q_a(\mathbf{X}, \Theta_2)) ||$$

$$\gamma = 1 \text{ and } \beta = 1 \text{ MinMax quantization}$$

Learnable equivalent transformation

- ➤ Migrate the difficulty of quantization from activations to weights with a mathematically equivalent transformation by channel-wise scaling and channel-wise shifting
- \triangleright T --- token sequence length, X --- input, W --- weight, B --- bias

$$\mathbf{X} \in \mathbb{R}^{T \times C_{in}} \qquad \mathbf{W} \in \mathbb{R}^{C_{in} \times C_{out}} \qquad \mathbf{B} \in \mathbb{R}^{1 \times C_{out}}$$

$$\mathbf{Y} = \mathbf{X}\mathbf{W} + \mathbf{B} = \underbrace{\left[(\mathbf{X} - \delta) \oslash s \right] \cdot \left[\underline{s} \odot \mathbf{W} \right] + \left[\underline{\mathbf{B}} + \delta \mathbf{W} \right]}_{\tilde{\mathbf{B}}}$$

> Y --- output

$$\mathbf{s} \in \mathbb{R}^{1 \times C_{in}}$$
 and $\delta \in \mathbb{R}^{1 \times C_{in}}$

 $ilde{\mathbf{X}}, ilde{\mathbf{W}}$ and $ilde{\mathbf{B}}$ Equivalent activation, weight and bias

Quantization pipeline

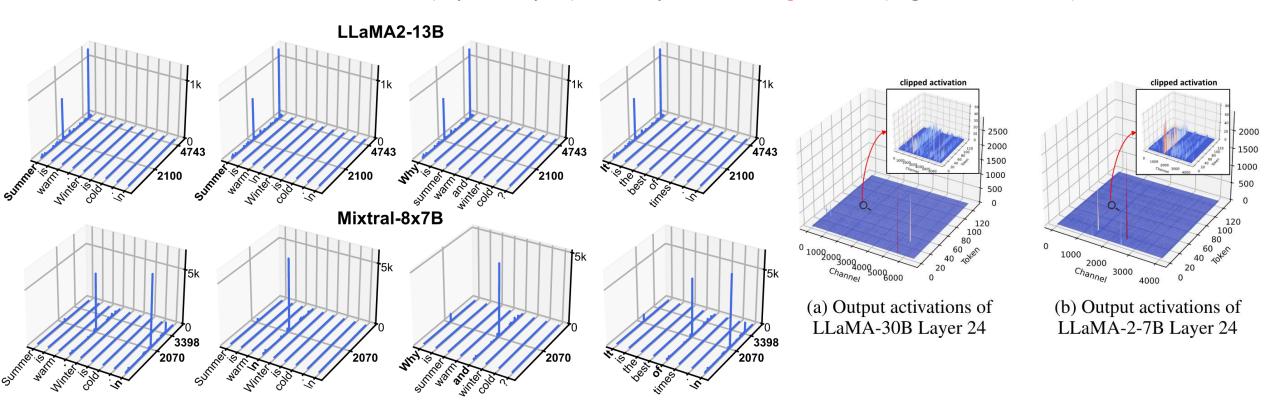
$$\mathbf{Y} = Q_a(\tilde{\mathbf{X}})Q_w(\tilde{\mathbf{W}}) + \tilde{\mathbf{B}},$$

 Q_a --- MinMax quantization Q_w --- MinMax quantization + LWC

Outlier

➤ Massive Outliers

- Very few activations exhibit significantly larger values than others (e.g., 100,000 times larger)
- Massive outliers are consistently present in very few fixed token dimensions
- Locations of Massive outliers (layer output): usually the starting tokens (e.g., [BOS] token)



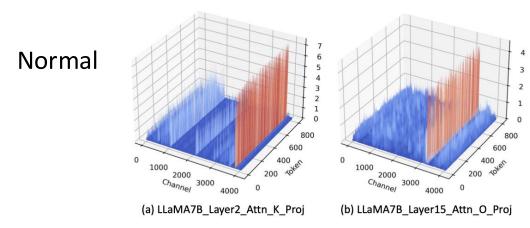
[1]. Sun M, Chen X, Kolter J Z, et al. Massive activations in large language models[J]. arXiv preprint arXiv:2402.17762, 2024.

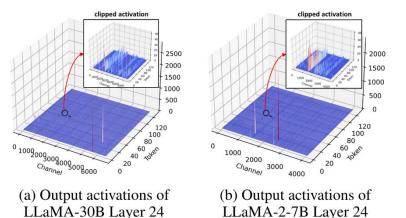
^{[2].} Liu R, Bai H, Lin H, et al. IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact[J]. arXiv preprint arXiv:2403.01241, 2024.

Outlier

➤ Massive Outliers vs Normal Outliers

- Normal: large values across specific feature dimensions and present in all token sequences
- Massive: exceedingly high values and occur in a subset of tokens

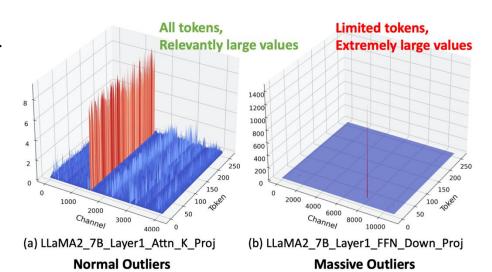




Massive

➤Our Observations

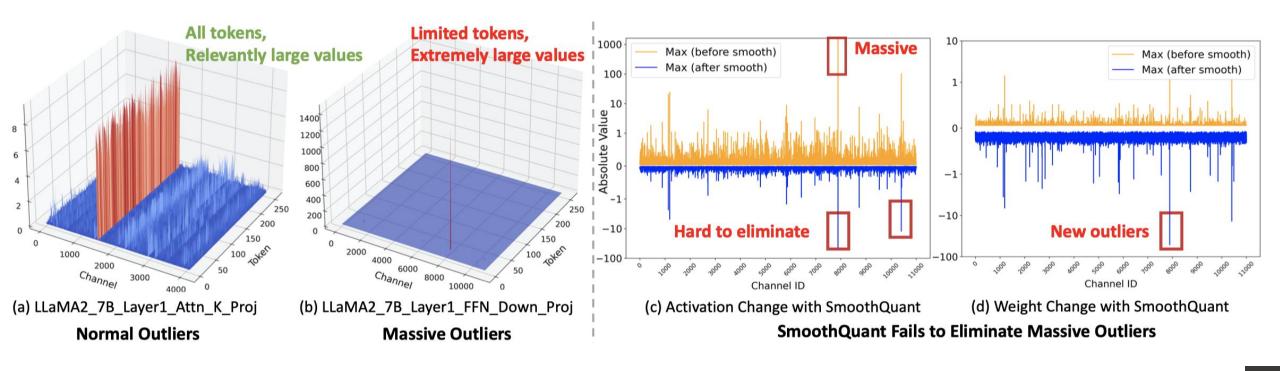
- Massive Outliers Exist at the Second Linear Layer (Down Projection) of FFN Module
- We first discover this phenomenon, previous works only focus on layer output



Outlier

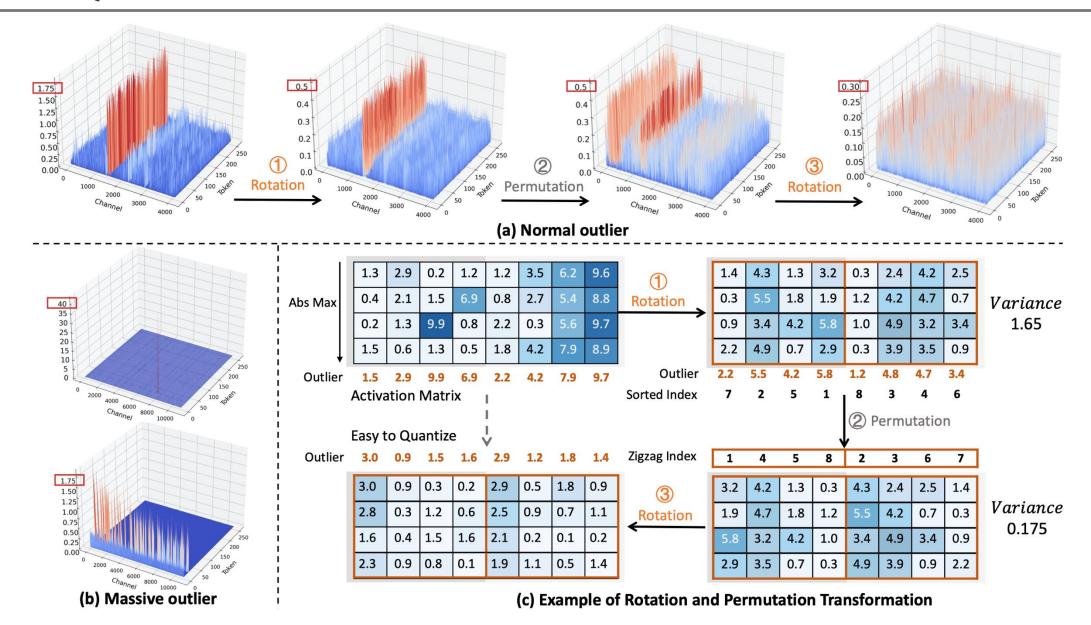
→Our Observations

- Massive Outliers Exist at the Second Linear Layer (Down Proj) of FFN Module
- Traditional Methods fail to eliminate these massive outliers
 - SmoothQuant: cause the weights of the down-projection to display noticeable outliers
 - OmniQuant and AffineQuant: optimization-based methods to encounter problems with loss explosion



- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b.** Permutation Transformation
 - c. Experiments
- **04** Summary and discussion

DuQuant

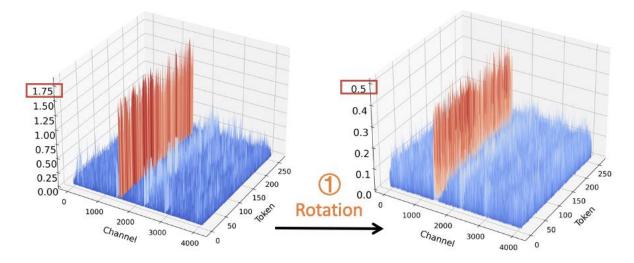


- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b.** Permutation Transformation
 - c. Experiments
- **04** Summary and discussion

Rotation

≻ Motivation

- Use rotation matrix to distribute the outliers to adjacent channels
- Ideal rotation matrix **R**.
 - Orthogonal $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I} \ |\mathbf{R}| = \pm 1$
 - Target the positions of outliers and mitigate them through matrix multiplication



➤ Rotation with prior knowledge

 \blacksquare Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation matrix $\hat{\mathbf{R}}$

Rotation

> Rotation with prior knowledge

- lacktriangle Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation matrix $\hat{\mathbf{R}}$
- The feature dimension $d^{(1)} = \arg \max_{j} (\max_{i} |\mathbf{X}_{ij}|)$
- Construct the rotation matrix by:

$$\mathbf{R^1} = \mathbf{E}_{d^{(1)}} \tilde{\mathbf{R}} \mathbf{Q} \mathbf{E}_{d^{(1)}}, \qquad \mathbf{Q} = egin{bmatrix} 1 & \mathbf{O} \\ \mathbf{O} & \mathbf{Q}' \end{bmatrix}$$

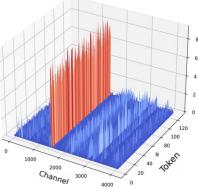
- $lackbox{f \mathbb{R}}$: an orthogonal initialized rotation matrix, first row is specifically uniformly distributed
- $lackbox{\bf E}_{d^{(1)}}$: switching matrix used to swap the first and the $d^{(1)}$ column of the activation
- lacksquare can mitigate outliers in the first column after the transformation by $\mathbf{E}_{d^{(1)}}$
- \blacksquare Q: further increase the randomness of the rotation operation, \mathbf{Q}' is a random orthogonal matrix
- Greedy search for *N* steps (once rotation may induce new outliers)

$$\hat{\mathbf{R}} = \mathbf{R}^1 \mathbf{R}^2 \cdots \mathbf{R}^n \quad n = \mathop{rg\min}_{k \in [1:N]} \left(\max_{i,j} |(\mathbf{X} \mathbf{R}^1 \cdots \mathbf{R}^k)_{ij}| \right)$$

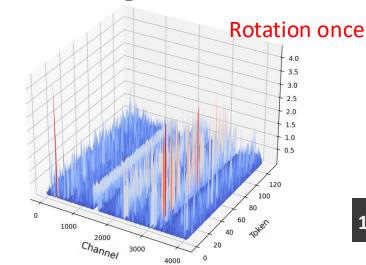
➤ Block-wise rotation

■ For time and memory efficiency, we use block-wise rotation matrix

$$\hat{\mathbf{R}} = ext{BlockDiag}(\hat{\mathbf{R}}_{b_1},...,\hat{\mathbf{R}}_{b_K}) \quad \hat{\mathbf{R}} \in \mathbb{R}^{C_{in} imes C_{in}} \quad \hat{\mathbf{R}}_{b_i} \in \mathbb{R}^{2^n imes 2^n}$$



Original

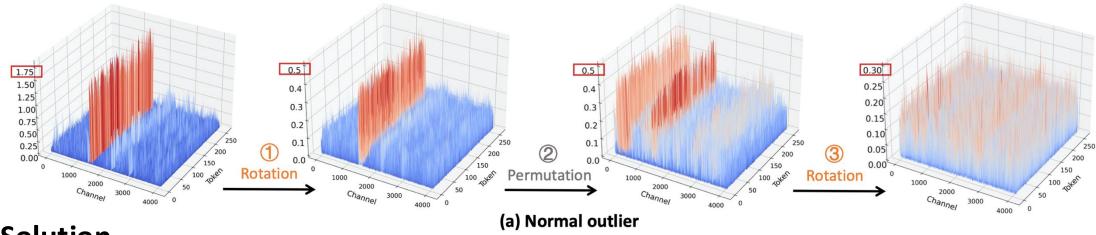


- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b. Permutation Transformation**
 - c. Experiments
- **04** Summary and discussion

Permutation

> Limitation of Rotation

- Block-wise rotation: uneven outlier magnitudes across different blocks
- Measurement: Compute the variance of different blocks $Var([M_{b_1}, M_{b_2}, ..., M_{b_K}])$
 - For i block, the M_{b_i} represents the mean values of all O_j , O_j is the largest outlier in dimension d_j



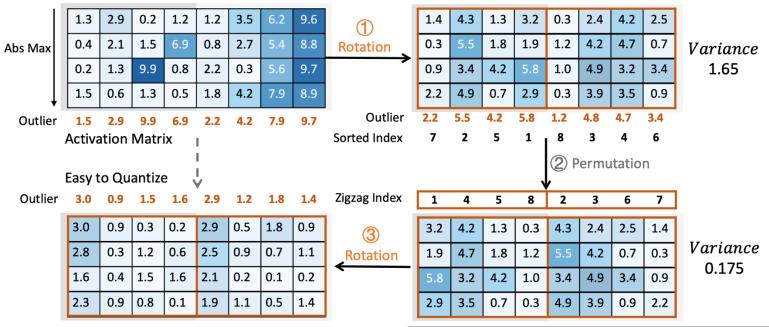
≻Solution

- Channel permutation to balance the distribution of outliers across blocks
- Permutation transformation is also orthogonal, denote as **P**
- After permutation, employ another rotation transformation to further smooth the activations

Zigzag Permutation

≻Zigzag Order

- Distribute the channels with the highest activations across the blocks in a back-and-forth pattern
- Fast with strong performance



	LLaMA2-13B							
Permutation Method	WikiText2↓	C 4 ↓	Variance	Time/s	WikiText2↓	C4 ↓	Variance	Time/s
w.o. Permutation	7.92	10.64	3.9e-2	27.5	5.96	7.94	3.1e-2	44.7
Random	6.40	8.08	4.9e-3	89.5	5.43	7.07	3.9e-3	148.6
Simulated Annealing	6.26	7.89	1.7e-4	769.6	5.42	7.06	1.5e-4	1257.8
Zigzag	6.28	7.90	3.0e-4	48.6	5.42	7.05	2.5e-4	74.0

DuQuant

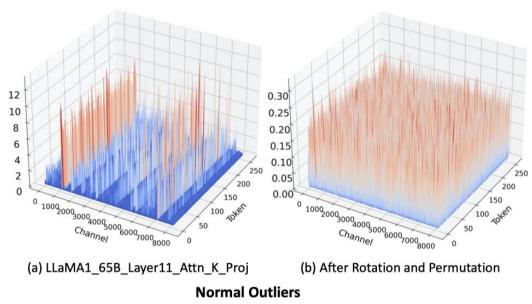
≻Linear Layer

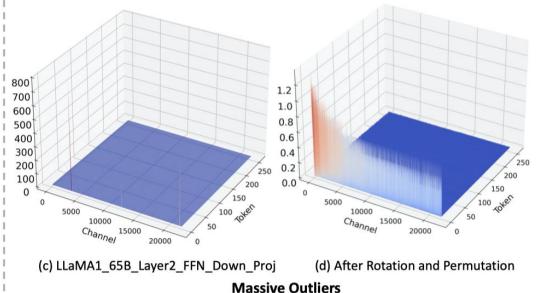
- Smooth techniques (SmoothQuant)
- Block-wise Rotation (block size: 128)
- Permutation along with second Rotation

Remark: DuQuant simultaneously smooth the weight

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} = [(\mathbf{X} \cdot \underline{\boldsymbol{\Lambda}}) \hat{\mathbf{R}}_{(1)} \cdot \mathbf{P} \cdot \hat{\mathbf{R}}_{(2)}] \cdot [\underbrace{\hat{\mathbf{R}}_{(2)}^{\top} \cdot \mathbf{P}^{\top} \cdot \hat{\mathbf{R}}_{(1)}^{\top} (\boldsymbol{\Lambda}^{-1} \cdot \mathbf{W})]}_{\mathbf{G}^{-1}}]$$

→ Visualization





- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b.** Permutation Transformation
 - c. Experiments
- **04** Summary and discussion

> DuQuant: Rotation twice, Permutation once

LWC: adjusts weights by training parameters $\gamma, \beta \in [0,1]$ to compute the step size $\Delta = \frac{\gamma \max(\mathbf{X}) - \beta \min(\mathbf{X})}{2^b - 1}$

➤ Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral

> Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

Dataset	#Bit	Method	1-7B	1-13B	1-30B	1-65B	2-7B	2-13B	2-70B
	FP16	-	5.68	5.09	4.10	3.53	5.47	4.88	3.31
		SmoothQuant	25.25	40.05	192.40	275.53	83.12	35.88	26.01
		OmniQuant	11.26	10.87	10.33	9.17	14.26	12.30	NaN
WikiText2		AffineQuant	10.28	10.32	9.35	-	12.69	11.45	-
	W4A4	QLLM	9.65	8.41	8.37	6.87	11.75	9.09	7.00
		Atom	8.15	7.43	6.52	5.14	8.40	6.96	NaN
		DuQuant	6.40	5.65	4.72	4.13	6.28	5.42	3.79
		DuQuant +Lwc	6.18	5.47	4.55	3.93	6.08	5.33	3.76
	FP16		7.08	6.61	5.98	5.62	6.97	6.46	5.52
		SmoothQuant	32.32	47.18	122.38	244.35	77.27	43.19	34.61
		OmniQuant	14.51	13.78	12.49	11.28	18.02	14.55	NaN
C4		AffineQuant	13.64	13.44	11.58	-	15.76	13.97	-
	W4A4	QLLM	12.29	10.58	11.51	8.98	13.26	11.13	8.89
		Atom	10.34	9.57	8.56	8.17	10.96	9.12	NaN
		DuQuant	7.84	7.16	6.45	6.03	7.90	7.05	5.87
		DuQuant +Lwc	7.73	7.07	6.37	5.93	7.79	7.02	5.85

- ➤ Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
- > Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

Model	Method	PIQA	ARC-E	ARC-C	BoolQ	HellaSwag	WinoGrande	Avg.
	FP16	77.47	52.48	41.46	73.08	73.00	67.07	64.09
	SmoothQuant	49.80	30.40	25.80	49.10	27.40	48.00	38.41
	OS+	62.73	39.98	30.29	60.21	44.39	52.96	48.43
LLaMA1-7B	OmniQuant	66.15	45.20	31.14	63.51	56.44	53.43	52.65
W4A4	AffineQuant	69.37	42.55	31.91	63.73	57.65	55.33	53.42
	QLLM	68.77	45.20	31.14	-	57.43	56.67	51.84
	Atom	71.44	47.74	35.49	67.71	63.89	55.01	56.88
	DuQuant	76.44	50.04	38.99	70.98	69.39	64.72	61.76
	DuQuant+LWC	76.22	50.04	38.31	70.09	69.82	62.59	61.18
	FP16	79.10	59.89	44.45	68.01	76.21	70.31	66.33
	SmoothQuant	61.04	39.18	30.80	61.80	52.29	51.06	49.36
	OS+	63.00	40.32	30.38	60.34	53.61	51.54	49.86
LLaMA1-13B	OmniQuant	69.69	47.39	33.10	62.84	58.96	55.80	54.37
W4A4	AffineQuant	66.32	43.90	29.61	64.10	56.88	54.70	52.58
	QLLM	71.38	47.60	34.30	-	63.70	59.43	55.28
	Atom	71.38	49.07	36.69	64.53	68.00	58.56	58.04
	DuQuant	77.26	58.04	41.55	67.55	73.62	66.69	64.12
	DuQuant+Lwc	77.64	57.32	41.21	66.79	74.12	65.98	63.84

	FP16	80.08	58.92	45.47	68.44	79.21	72.53	67.44
	SmoothQuant	58.65	35.53	27.73	60.42	35.56	48.06	44.83
	OS+	67.63	46.17	34.40	60.70	54.32	52.64	52.62
LLaMA1-30B	OmniQuant	71.21	49.45	34.47	65.33	64.65	59.19	56.63
W4A4	AffineQuant	70.84	49.41	37.12	70.12	65.53	58.64	58.61
	QLLM	73.83	50.67	38.40	-	67.91	58.56	57.87
	Atom	71.98	49.07	40.02	66.85	70.45	58.64	59.50
	DuQuant	78.56	56.99	42.32	66.73	76.70	69.61	65.15
	DuQuant+Lwc	78.73	56.52	43.17	68.84	77.53	70.96	65.96
	FP16	80.79	58.71	46.24	82.29	80.72	77.50	71.04
	SmoothQuant	64.47	40.44	29.82	59.38	39.90	52.24	47.71
LLaMA1-65B	OS+	68.06	43.98	35.32	62.75	50.73	54.30	52.52
W4A4	OmniQuant	71.81	48.02	35.92	73.27	66.81	59.51	59.22
	QLLM	73.56	52.06	39.68	-	70.94	62.90	59.83
	Atom	74.48	51.60	40.61	73.76	73.78	62.12	62.73
	DuQuant	79.71	57.95	45.05	79.82	78.66	72.29	68.91
	DuQuant+LWC	79.98	58.29	44.80	77.89	79.22	72.21	68.73

➤ Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral

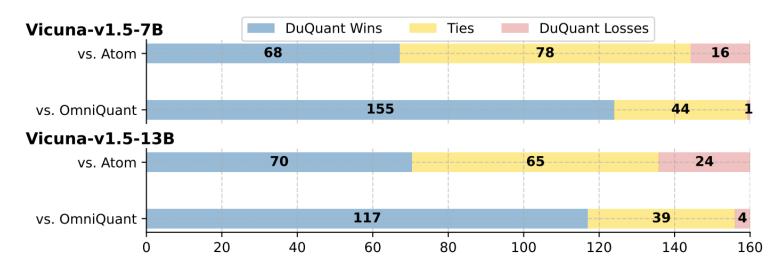
> Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

#Bits	Method	WikiText2↓	C4 ↓	PTB ↓	PIQA	ARC-E	ARC-C	BoolQ	HellaSwag	WinoGrande	Avg. ↑
FP16	-	6.14	8.88	9.91	80.85	77.78	53.41	81.28	79.16	72.84	74.22
	SmoothQuant	7.07	9.57	11.69	78.94	75.88	49.49	77.58	77.39	70.8	71.68
LLaMA3-8B	OmniQuant	7.24	9.82	11.90	78.90	73.95	47.35	74.95	76.77	70.56	70.41
W6A6	AffineQuant	7.35	9.99	12.30	78.73	73.32	46.08	74.59	77.08	70.88	70.11
WOAO	DuQuant	6.27	8.38	10.77	80.20	77.27	52.05	80.12	79.14	72.77	73.59
	DuQuant+LWC	6.27	8.38	10.78	79.71	<i>77.</i> 57	53.07	80.00	78.70	73.09	73.69
	SmoothQuant	210.19	187.93	278.02	54.57	31.9	24.23	52.72	31.26	51.14	40.97
	OmniQuant	3.64e3	2.80e3	3.09e3	50.22	26.94	24.57	37.98	26.55	50.20	36.08
LLaMA3-8B	AffineQuant	21.21e3	34.60e3	16.72e3	50.71	25.93	26.02	40.55	26.07	48.46	36.29
W4A4	Atom	22.14	31.83	40.04	62.95	49.45	30.12	60.31	53.75	56.04	52.10
	DuQuant	8.56	11.98	13.66	75.68	68.48	41.81	71.99	73.07	66.22	66.21
	DuQuant+LWC	8.06	11.29	13.19	76.22	70.41	43.69	74.34	73.87	67.80	67.72

#Bits	Method	WikiText2↓	C4 ↓	PTB↓ PIQA	ARC-E	ARC-C	BoolQ	HellaSwag	WinoGrande	Avg. ↑
FP16	-	2.9	6.9	8.2 82.4	86.9	60.3	85.2	84.9	80.6	80.1
LLaMA3-70B	SmoothQuant	9.6	16.9	17.7 76.9	75.8	43.5	64.4	62.9	58.9	63.7
W4A4	DuQuant	4.9	8.3	8.7 81.1	80.8	57.3	81.3	82.1	77.0	76.6

- ➤ Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
- > Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

Model	Model Method			LU (0 sh	ot) ↑		MMLU (5 shot) ↑				
1710401		STEM	Hums	Social	Others	Avg.	STEM	Hums	Social	Others	Avg.
	FP16	43.70	50.48	62.72	62.74	54.54	44.96	51.97	65.26	62.40	55.78
Vienne v.1 5 12D	SmoothQuant	21.70	24.29	22.13	23.16	22.82	25.31	24.97	26.00	27.08	25.84
Vicuna-v1.5-13B	OmniQuant	26.81	26.57	30.35	28.75	28.12	28.79	27.29	31.13	28.99	29.05
W4A4	Atom	32.54	39.60	46.02	46.11	41.07	35.35	39.21	59.72	45.77	45.01
	DuQuant	40.82	46.61	58.73	57.59	50.94	40.92	48.78	60.42	57.71	51.96
	DuQuant+Lwc	40.13	47.48	58.86	57.83	51.08	4142	48.52	58.73	57.74	51.61



DuQuant v.s. FP16	Former Win	Tie	Former Loss
Vicuna-v1.5-7B	36	56	68
Vicuna-v1.5-13B	43	53	64

- ➤ Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
- > Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

Vicuna-v1.5-7B	RepoBench-P	MultiFieldQA-en	GovReport	MultiNews	DuReader	2WikiMQA	TriviaQA
FP16	48.23	38.30	27.93	26.91	25.53	18.02	82.59
SmoothQuant	25.92	4.66	2.62	6.05	4.24	2.02	1.62
OmniQuant	14.97	2.30	2.51	2.64	1.87	0.48	0.81
Atom	29.34	31.15	23.60	24.60	19.41	17.10	67.20
DuQuant	47.66	35.62	25.66	25.85	23.15	15.09	78.91
Vicuna-v1.5-7B	QMSum	MultiFieldQA-zh	NarrativeQA	Qasper	SAMSum	TREC	Avg
FP16	21.07	32.56	14.96	23.27	41.06	66.00	35.88
SmoothQuant	2.00	0.88	1.75	4.11	1.55	15.00	5.57
OmniQuant	3.93	1.40	1.10	1.62	0.61	1.00	2.71
Atom	20.24	21.55	11.57	17.97	37.94	58.00	29.21
DuQuant	21.15	29.56	11.31	19.98	42.24	64.00	33.86

Vicuna-v1.5-13B	RepoBench-P	MultiFieldQA-en	GovReport	MultiNews	DuReader	2WikiMQA	TriviaQA
FP16	43.08	42.69	28.43	26.53	27.57	29.40	86.81
SmoothQuant	11.57	1.64	2.81	3.54	6.71	1.39	1.83
OmniQuant	8.46	4.32	0.74	2.83	13.83	0.75	1.13
Atom	37.31	37.31	19.34	23.39	21.79	15.16	80.75
DuQuant	38.09	44.12	26.97	26.59	26.02	22.07	83.04
Vicuna-v1.5-13B	QMSum	MultiFieldQA-zh	NarrativeQA	Qasper	SAMSum	TREC	Avg
FP16	21.24	40.44	15.41	24.41	41.97	68.00	40.64
SmoothQuant	2.95	0.82	0.97	2.18	0.35	1.50	4.21
OmniQuant	1.78	1.06	0.62	0.68	0.45	9.00	4.58
Atom	20.23	28.02	8.81	17.67	38.72	59.00	33.58
DuQuant	20.72	30.85	13.36	18.93	42.67	66.50	38.13

- Single-Document QA tasks:
 Qasper, MultiFieldQA, and
 NarrativeQA (F1 score)
- Multi-Document QA tasks:
 DuReader (Rouge-L score) and
 2WikiMultihopQA (F1 score)
- 3. Summarization task:
 MultiNews (Rouge-L score)
- 4. Few-shot Learning tasks:
 TREC (Accuracy CLS),
 TriviaQA (F1 score), and
 SAMSum (Rouge-L score)
- 5. Code Completion task:
 RepoBench-P (similarity score)

Ablation

► Influence of different components in DuQuant

	M	lodules		LLaMA	2-7B	LLaMA2-13B		
Smooth	Rotation 1	Permutation	Rotation 2	WikiText2↓	C4 ↓	WikiText2↓	C4 ↓	
√				NaN	1379.46	160.30	203.87	
	✓			8.48	10.63	14.32	21.73	
\checkmark	✓			7.92	10.64	5.96	7.94	
	✓	✓	✓	6.79	8.51	6.06	8.03	
\checkmark	\checkmark	✓	✓	6.28	7.90	5.42	7.05	

> Quantization runtime on single A100

Model	Omni.	Affine.	QLLM	Atom	DuQuant
LLaMA2-7B	2.0h	9.1h	1.1h	20min	50s
LLaMA2-13B	3.2h	16.0h	1.7h	36min	71s
LLaMA2-70B	14.6h	18.6h	9.3h	3.5h	270s

> Calibration-free: use random data

II aMA2 7D		Eval.		
	LLaMA2-7B	WikiText2 ↓	C 4 ↓	
Calib.	Randomly Generated	6.25	7.86	
	WikiText2	6.25	7.87	

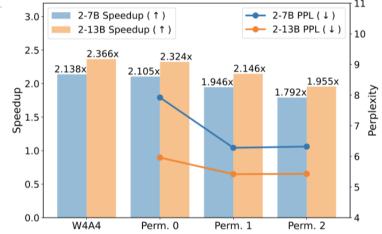
	LLaMA2-13B	Eval. WikiText2↓	C4 ↓
Calib.	Randomly Generated WikiText2	5.45 5.44	7.05 7.05

- ➤ Settings: LLaMA2-7B, Measure on RTX 3090, Input seq --- 2048, Decoding --- 128 steps
- > Pre-filling stage --- computational bound, measure the speedup
- ➤ Decoding stage --- memory bound, measure the memory usage

INT4, BS=1	Time (ms)	Saving Factor	Memory (GB)	Saving Factor	WiKi↓	QA avg.↑
FP16	568	-	13.638	-	5.47	63.72
SmoothQuant	248	2.290x	3.890	3.506x	83.12	44.52
QLLM	435	1.306x	3.894	3.502x	9.09	51.60
QuaRot	284	2.000x	3.891	3.505x	6.39	61.25
DuQuant	288	1.972x	3.893	3.503x	6.28	61.76

Table E13: Decoding phase results of one LLaMA2-7B layer with a batch size of 64.

Method	Time (ms)	Saving Factor	Memory (GB)	Saving Factor
FP16	659	-	3.550x	-
SmoothQuant	437	1.508x	1.669	2.127x
QLLM	OOM	-	OOM	-
QuaRot	457	1.442x	1.678	2.116x
DuQuant	499	1.321x	1.677	2.117x



- 01 Network Quantization
- **02** Outliers and Baselines
- 03 DuQuant
 - a. Rotation Transformation
 - **b.** Permutation Transformation
 - c. Experiments
- 04 Summary and discussion

Summary

- > The motivation of our DuQuant is straightforward and insightful --- massive outliers at Down_proj
- > Rotation and permutation demonstrates effective and fast for outlier management
- > These two transformations are also highly motivated and easy to understand
- > Discussion or interesting questions:
 - The speedup for decoding stage requires better kernel.
 - How to fuse these transformations into LLMs?
 - Why LLaMA3 suffers the performance degradation?
 - What's the influence of calibration data for LLM compression?

Thanks for listening

Q & A

haokun.lin@cripac.ia.ac.cn