SGLang v0.2: Faster Interface and Runtime for LLM inference (confidential)

Ying Sheng, Liangsheng Yin, Zhiqiang Xie

Aug -Dec. 2023

Early Stage: the "programming LLM" paradigm

Jan. now 2024

Middle Stage: innovative features and optimizations

now -2024 Production Stage: research and industry use-cases

Early Stage: the "Programming LLM" Paradigm

From chat and simple prompting to programmatic usage of LLMs

Simple Chat LLM Programs

Multiple calls

Advanced prompting

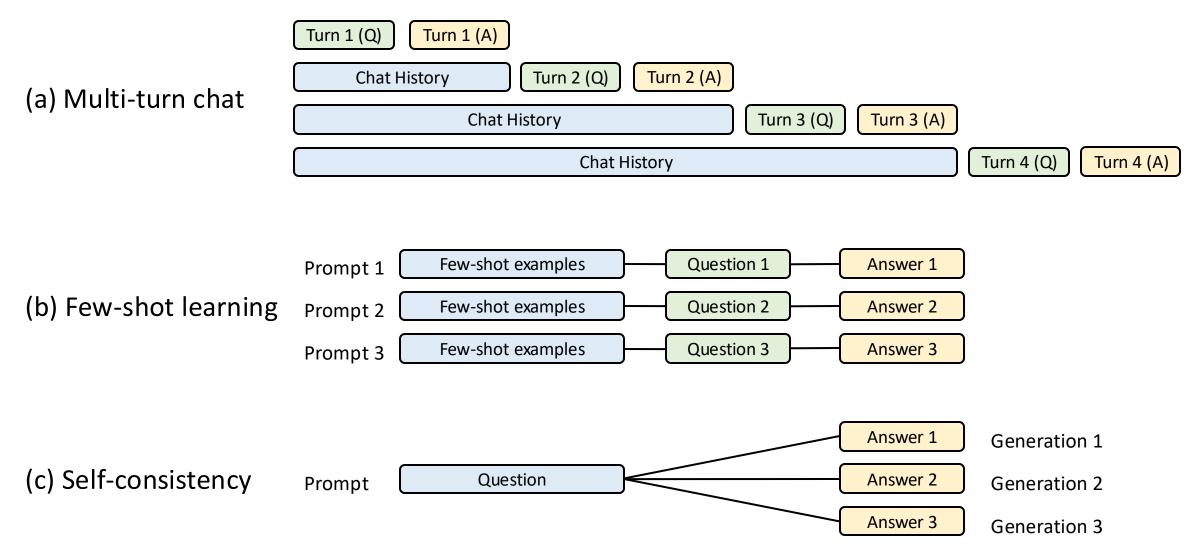
Control flow

Existing Systems

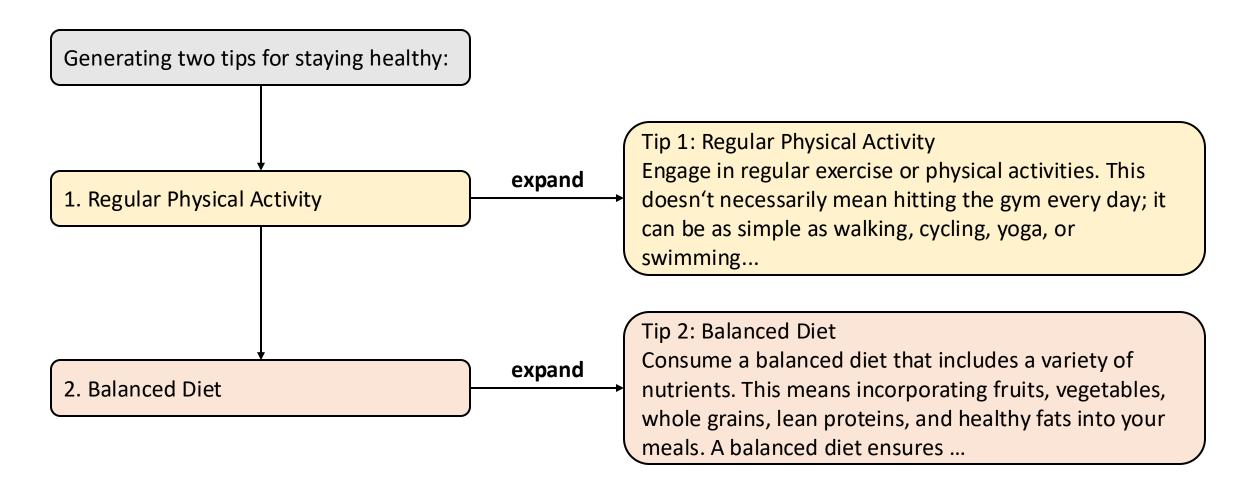
Front end language: ignored runtime optimizations (Guidance, LMQL)

Backend Inference engine: do not know program structure (NVIDIA TensorRT-LLM, vLLM)

Opportunity: KV Cache Reuse



Opportunity: Parallelism



System Challenges

How to program these LLM applications?

How to optimize across multiple LLM calls?

Early Stage

Introducing SGLang: A Structured Generation Language

A "co-design" approach

Front end

- A new domain specific language embedded in Python
- Automatic parallelization and other compiler optimizations

Back end

- Automatic KV cache reuse with RadixAttention

API example: A Multi-Dimensional Essay Judge

```
dimensions = ["Clarity", "Originality", "Evidence"]
@function
                                                                             Frontend
def essay judge(s, essay):
  s += "Please evaluate the following essay. " + essay
 # Evaluate an essay from multiple dimensions in parallel
 forks = s.fork(len(dimensions)) ←--
                                                          ----- Launch parallel prompts
 for f, dim in zip(forks, dimensions):
   f += (
     "Evaluate based on the following metric: " +
     dim + ". End your judgement with the word 'END'")
   f += "Judgment: " + f.gen("judgment", stop="END") ←---- Non-blocking generation call
 # Merge judgments
 for f, dim in zip(forks, dimensions):
   s += dim + ": " + f["judgment"] ←----
                                                          ----- Fetching generation results
 # Generate a summary and give a score
  s += "In summary," + s.gen("summary")
  s += "I give the essay a letter grade of " +
  s += s.gen("grade", choices=["A", "B", "C", "D"]) ←----- Constrained generation
                                                          ----- Run the function
ret = essay_judge.run(essay="A long essay ...") ←
print(ret["grade"])
```

Compiler Optimizations

- Building a dataflow graph
 - Remove Python Interpreter Overhead
 - Global scheduling optimization over the graph

- Prefetching cached prefixes
 - Insert prefetching nodes into the graph

Frontend

Backend

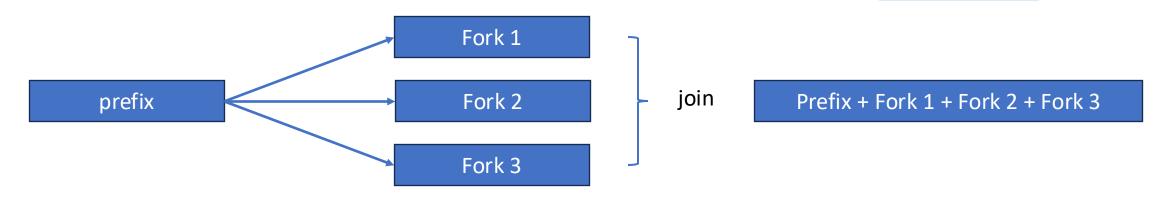
- Code movement for increasing sharable prefix length
 - Reorder some prompt elements with the help of GPT-4

Prefix caching from request tracking?

- In multi-turn chat, retrieval tasks, etc
 - The interpreter tracks the request id (rid) and caches the history before it ends.
 - Only needs to match the rid.
 - "pin" is a primitive of fixing a prefix to be cached.
 - "fork/join" primitives

Frontend

Backend



Cannot reuse shared prefix across requests!

Aug -Dec. 2023

Early Stage: the "programming LLM" paradigm

Jan. now 2024

Middle Stage: innovative features and optimizations

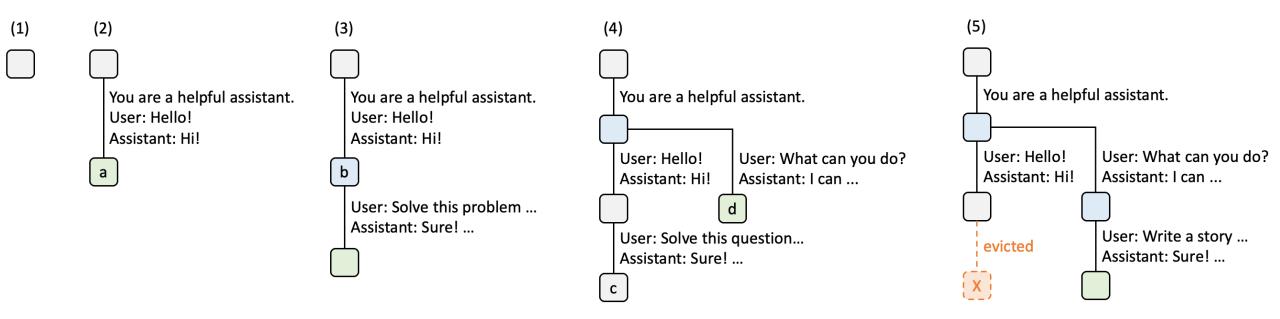
Focused efforts on backend/runtime performance

now -2024 Production Stage: research and industry use-cases

Runtime (SRT) with RadixAttention

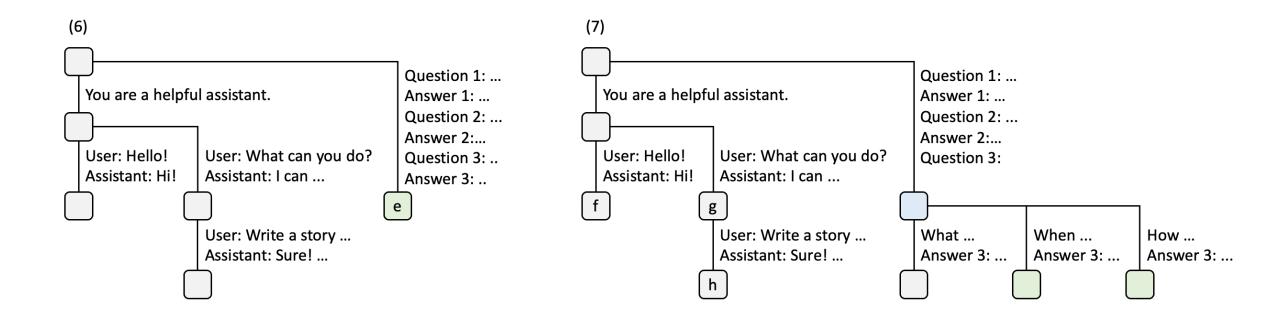
Existing Systems: Discard KV cache after a request finishes.

Ours: Maintain an LRU cache of the KV cache of all requests in a radix tree (compact prefix tree).



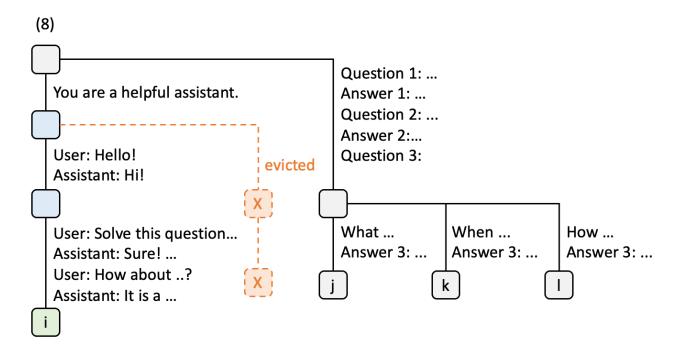
Runtime (SRT) with RadixAttention

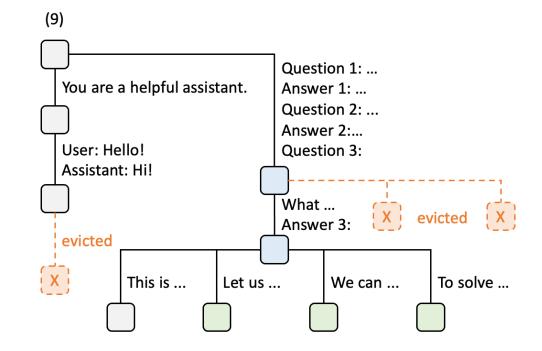
Maintain an LRU cache of the KV cache of all requests in a radix tree.



Runtime (SRT) with RadixAttention

Maintain an LRU cache of the KV cache of all requests in a radix tree.





Cache Aware Scheduling

- In the request queue, sort the requests according to the matched prefix length
 - Achieves good cache hit rate

- Future work
 - Distributed cache aware scheduling for multiple data parallel workers
 - Fairness to prevent starvation (https://arxiv.org/abs/2401.00588)

Aug -Dec. 2023

Early Stage: the "programming LLM" paradigm

Jan. now 2024

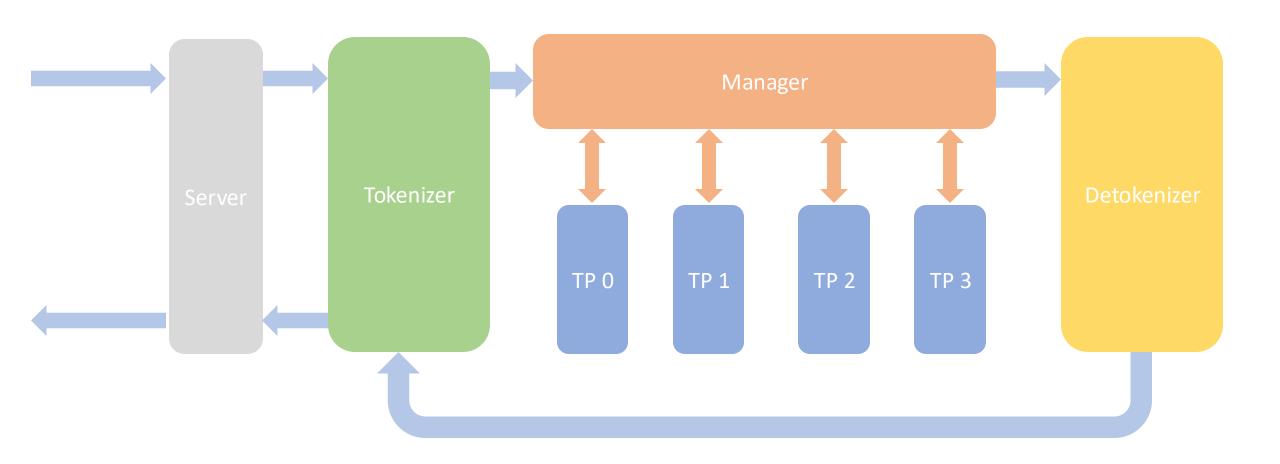
Middle Stage: innovative features and optimizations

RadixAttention

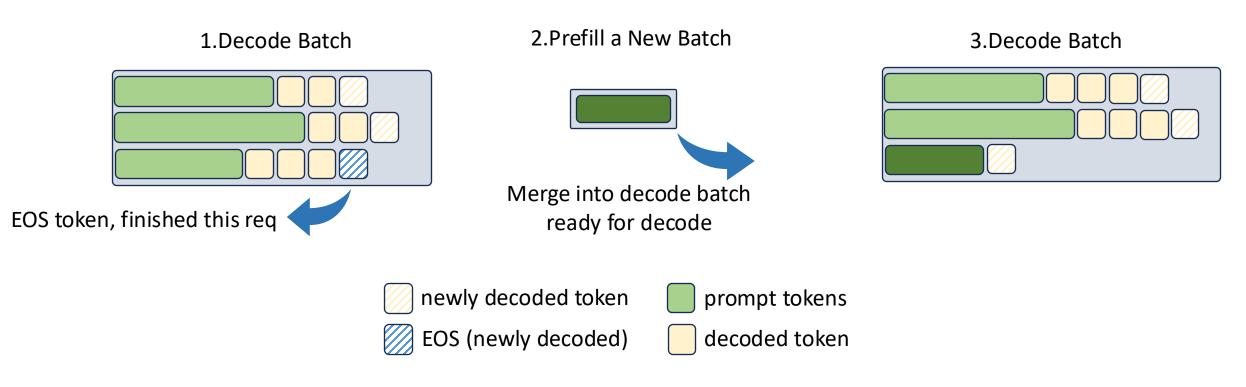
Upper-level Scheduling

now -2024 Production Stage: research and industry use-cases

SGLang Structure: Pipeline



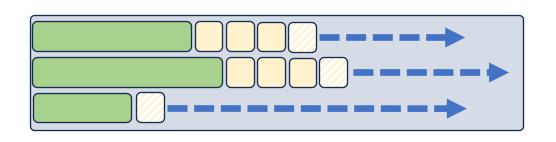
SGLang Structure: Inside TP Worker



How to always keep the batch size large enough?

Middle Stage

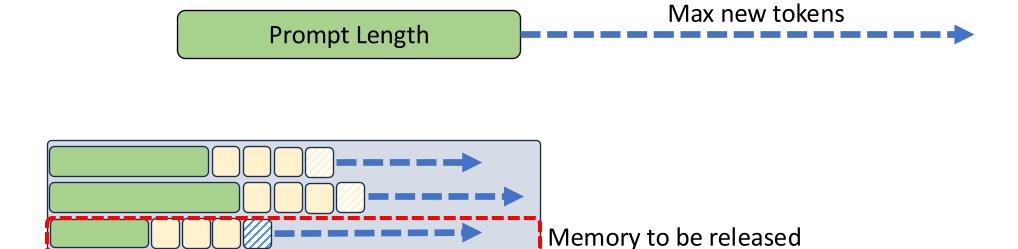
Dynamically Adjust the new token ratio estimation



The max context length decided by max new tokens

- There is a lot of space left in the GPU memory
- We do not need to reserve every token in max new tokens

Dynamically Adjust the new token ratio estimation



- 1. The EOS would be earlier than the max new tokens.
- 2. There are always requests finished and release all the memory.

Only preserve $\beta \times \text{max_new_token}$ tokens in advance, and adjust β dynamically.

Aug -Dec. 2023

Early Stage: the "programming LLM" paradigm

Jan. now 2024

Middle Stage: innovative features and optimizations

RadixAttention

Upper-level Scheduling

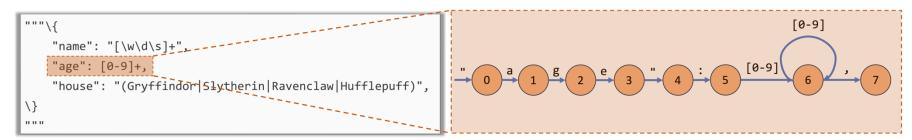
Jump-forward decoding

now -2024 Production Stage: research and industry use-cases

Jump-forward JSON Decoding

Method

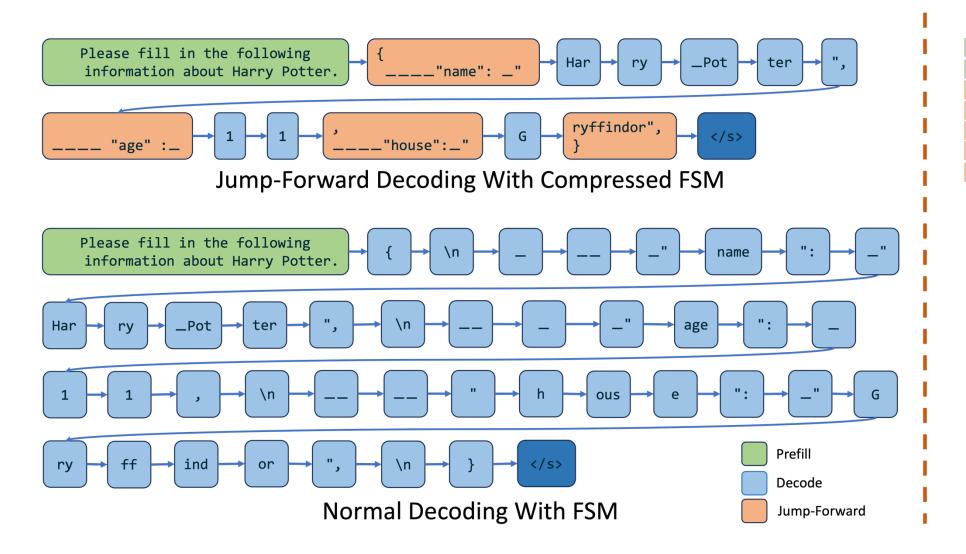
- Analyze the regular expression
- Compress the finite state machine
- Decode multiple tokens at the same time



Regular Expression

Finite State Machine

Speedup Regex Guided Generation



```
Please fill in the following
information about Harry Potter.
  "name": "Harry",
  "age": 15,
  "house": "Gryffindor"
Please fill in the following
information about Harry Potter.
  "name": "Harry",
  "age": 15,
  "house": "Gryffindor"
```

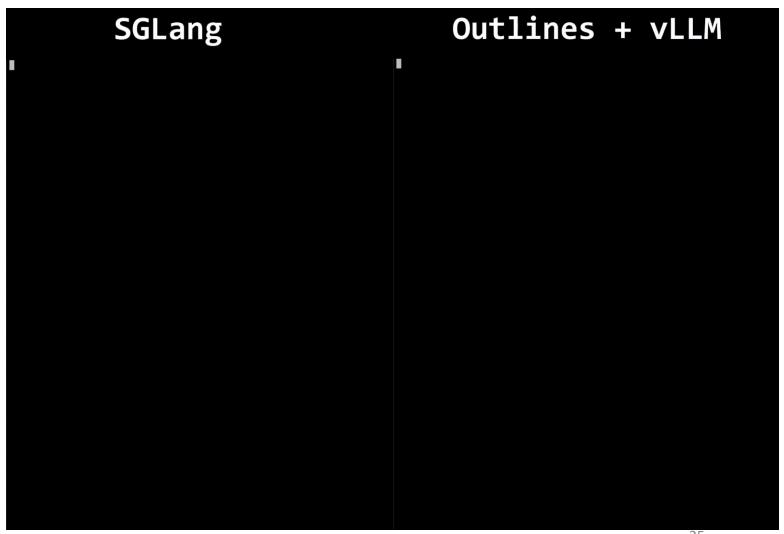
Generated JSONs

Jump-forward JSON Decoding

Results:

3x faster latency

2.5x higher throughput

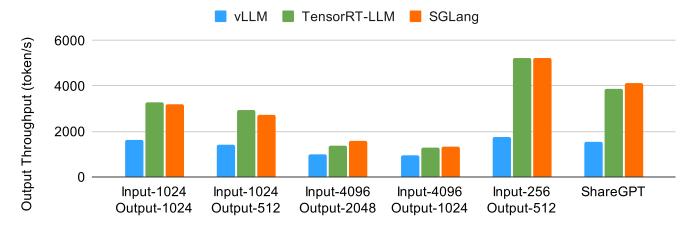


Summary: techniques in SGLang

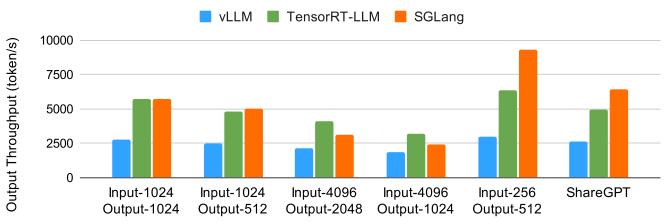
- RadixAttention
- Jump-forward JSON Decoding
- Torch Compile
- Flashinfer Kernels
- Chunked Prefill
- Continuous Batching
- Token Attention(Paged Attention with page_size = 1)
- CUDA Graph
- Interleave window attention

SGLang v0.2 Results

Llama-8B (bf16) on 1 x A100. Higher Throughput is Better.



Llama-70B (fp8) on 8 x H100. Higher Throughput is Better.



Aug -Dec. 2023

Early Stage: the "programming LLM" paradigm

Jan. now 2024

Middle Stage: innovative features and optimizations

now -2024 Production Stage: research and industry use-cases

Research and industry use cases

x.ai: Production serving of grok-2 and grok-2-mini on X

Databricks: accelerate research workflow by 3.3x

LMSys Chatbot Arena: serving vision language models

<u>LLaVA OneVision</u>: serving multi-modal image and video models

Production Stage

Future work

- multi-level cache
- distributed radix attention for replicas
- long-context sequence parallelism
- speculative decoding
- communication overlapping
- •

Production Stage

Do the serving engines come to converge on performance?

YES and NO

Basic performance eventually converge

But there are more sophisticated workloads from different scenarios: RAG systems, agent systems, ...

We never forget about the origin of SGLang!
Structured inputs, interactions with different resources, multi-modality, ...

Principles in future development

Simplism

Minimalism

Modularity

Ease of use

Development velocity

Performance

Future work

- multi-level cache
 - distributed radix attention for replicas
 - long-context sequence parallelism
 - speculative decoding
 - communication overlapping

Context KV caching is huge for serving!

"Our system achieves a 95% cache rate, further reducing inference cost."

-- from Character AI

"Even without any optimization, historical data shows that users save over 50% on average."

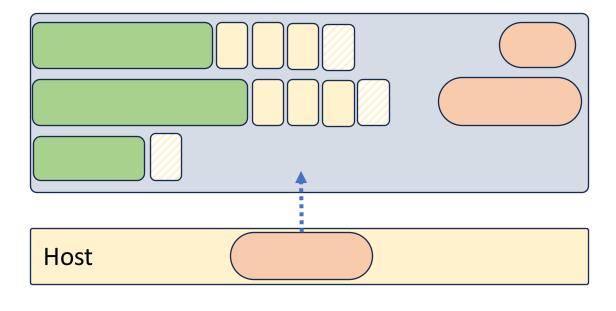
-- from DeepSeek

"We observed a 52.4% cache hit rate for LLaVA-Next-34B and 74.1% for Vicuna-33B."

-- from Chatbot Arena

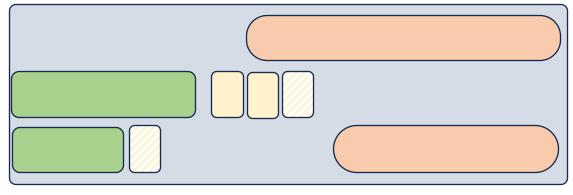
• • •

Challenges for caching



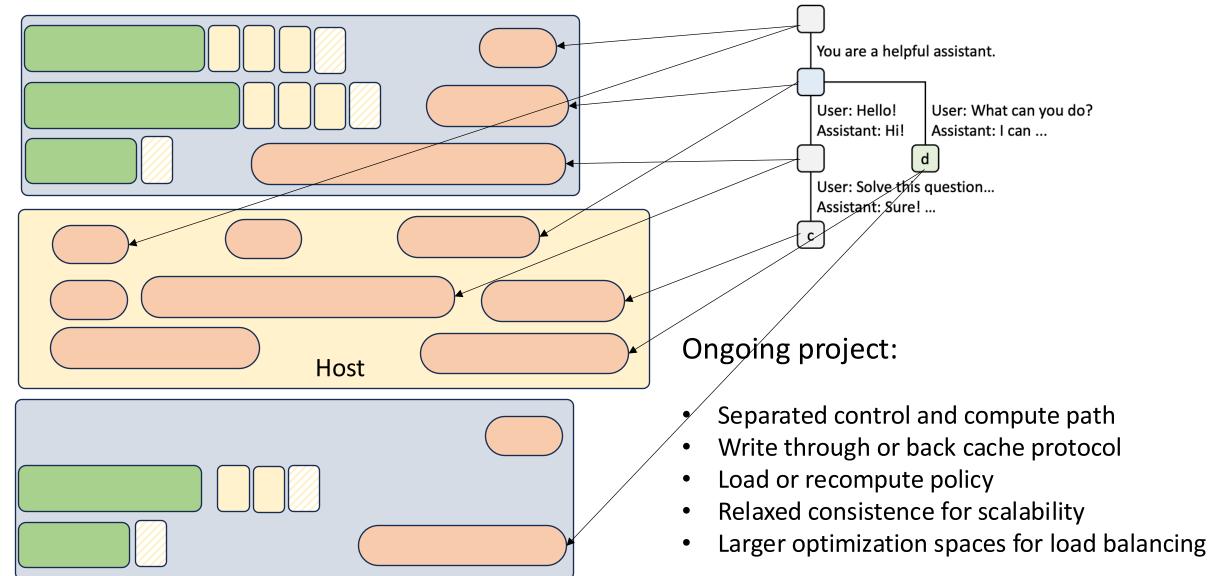
Historical KV caches compete GPU memory with ongoing requests

Offloading and reloading requires more user effort and potentially increase latency

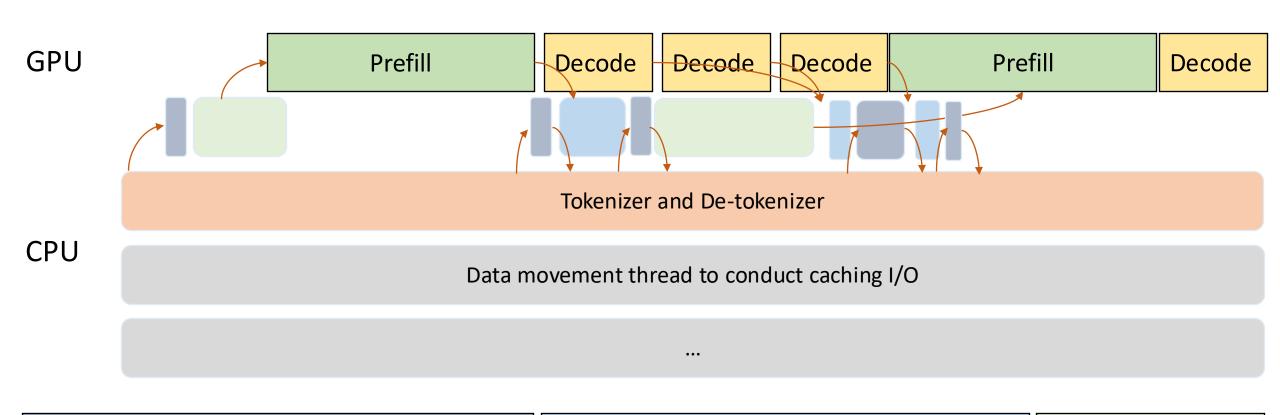


Trade-off between load balancing and cache hit rate for multi-GPU scenarios

Towards a transparent multi-level caching



Design principle: separated control and compute path



Updating Radix Tree and Memory Pool

Prepare next batch

Poll new requests, send out finished requests